PHASE II GEO-ENVIRONMENTAL ASSESSMENT REPORT

FINAL REV A

Joseph Norton SEMH School, Huddersfield

May 2023

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT

Lawrence House | 6 Meadowbank Way | Nottingham | NG16 3SB 01773 535555 | design@hspconsulting.com | www.hspconsulting.com

Joseph Norton SEMH School Land off Deighton Road Deighton Huddersfield HD2 1JP

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Frank Shaw Associates Ltd on behalf of Kirklees Council as the Phase II Geo-environmental Assessment Report for the former Deighton Centre (off Deighton Road) to identify possible areas of contamination and provide an assessment of potential ground related development constraints.

This report may not be used by any person other than Frank Shaw Associates Ltd on behalf of Kirklees Council and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than Frank Shaw Associates Ltd on behalf of Kirklees Council.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
-	FINAL	M. Kent B.Sc. (Hons), FGS	K. Murray BSc (Hons), MSc FGS, MIMMM	H. Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	13.03.2023
A	FINAL	M. Kent B.Sc. (Hons), FGS	K. Murray BSc (Hons), MSc FGS, MIMMM	H. Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	16.05.2023
Document Reference: HSP2023-C4164-G-GPII-1222				Project Number: C4164	

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 6 Meadowbank Way, Nottingham, NG16 3SB T 01773 535 555 W www.hspconsulting.com

Contents

1.	Introduction	1
1.1	Background	1
1.2	Client Brief & Scope	1
1.3	Report Objectives	1
1.4	Limitations	1
1.5	Previous Reports	2
2.	Review of Existing Information & Geoenvironmental Setting	3
2.1	The Site	3
2.2	Geology	4
2.3	Local Authority Health Officer Communication	5
2.4	Pertinent Site Sensitivity Information	5
3.	Fieldwork & Factual Information	7
3.1	Exploratory Methods	7
3.2	In-situ Testing	8
3.3	Laboratory Testing	8
3.4	Ground Conditions	9
3.5	Groundwater Levels	10
3.6	Hazardous Ground Gas Monitoring	10
3.7	Visual and Olfactory Evidence of Contamination	10
4.	Geotechnical Assessment	11
4.1	Detailed Ground Model	11
4.2	Earthworks	13
4.3	Foundations	13
4.4	Ground Floor Slab	14
4.5	Excavations	14
4.6	Concrete Classification	15
4.7	Pavement Design	15
4.8	Infiltration Drainage	16
5.	Environmental Assessment	17
5.1	Introduction	17
5.2	Assessment of Soil Analysis Results	17
5.3	Human Health Mitigation	8
5.4	Protection of Controlled Waters	19

5.5	Ground Gas Risk Assessment	.20
5.6	Water Supply	.20
5.7	Waste Classification	.21
5.8	Updated Conceptual Site Model	.21
	Development Constraints	.23
	References	.24
	5.5 5.6 5.7 5.8	 5.5 Ground Gas Risk Assessment

Appendices

Appendix I	-	Site Location Plan
Appendix II	-	Development Block Plan
Appendix III	-	Exploratory Hole Logs
Appendix IV	-	Ground Investigation Layout Plan
Appendix V	-	Chemical Analysis Results
Appendix VI	-	Geotechnical Results
Appendix VII	-	TRL Probe Results
Appendix VIII	-	Infiltration Test Certificates
Appendix IX	-	Ground Gas Monitoring Results
Appendix X	-	HazWasteOnline [™] Waste Classification Results

Executive Summary

HSP Consulting Engineers Ltd has been commissioned by Frank Shaw Associates Ltd on behalf of Kirklees Council to provide a Phase II Geo-environmental Assessment report providing information on likely constraints to the development of the site, parameters for design and recommendations for any mitigation measures should they be required.

The site is located off Deighton Road, land formerly occupied by the Deighton Centre. The approximate National Grid Reference for the centre of the site is (NGR) 415904, 419561.

The ground investigation comprised ten windowless sample boreholes to a maximum depth of 4.22m and eight machine excavated trial pits to a maximum depth of 3.20m begl. Three of the trial pits were utilised for infiltration testing. Three rotary boreholes were undertaken between the 24th and 26th April 2023. The geology of the site generally comprises Made Ground to variable depth overlying bedrock deposits of the Pennine Lower Coal Measures. No evidence of coal seams/worked seams have been recorded although fractured/broken ground has been recorded from 3.2m to 5.2m begl within RO02, where flush returns reduced before returning to consistent levels.

Traditional strip or pad foundations could be utilised within the firm to stiff cohesive deposits in the central and southern site areas at minimum depths of 0.75m begl to a net allowable bearing pressure of 100kN/m², increasing to 200kN/m² at 2.00m begl. However, in part the proposed building footprint overlies significantly deeper Made Ground and soft cohesive deposits that are not considered suitable for a traditional foundation. Due to these constraints, traditional foundations are unlikely to be feasible within this area and a piled foundation solution should be considered with piles extending into the competent mudstone strata.

A suspended ground floor slab is recommended. It may be possible to adopt a ground bearing floor slab where existing Made Ground materials and soft cohesive deposits are replaced with engineered fill below the proposed building footprint.

The natural soils encountered are generally considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1s. Should Made Ground materials be retained on site and concrete foundations / slabs come into contact with the material, it is considered appropriate to adopt a basic Design Sulphate Class of DS-3 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-2s, based on worst case results within Made Ground material.

Infiltration testing was undertaken as part of the ground investigation to assess the suitability of the soils for surface disposal by infiltration (soakaways). The results of the preliminary soakaway testing suggest that the site will be suitable for soakaway drainage. Any infiltration drainage utilised within the scheme will need to take into consideration the elevated PAH and lead identified at some locations within the shallow Made Ground.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential with home grown produce setting were exceeded for lead in one location and polyaromatic hydrocarbons (PAHs) across seven locations from samples within the Made Ground. Loose amosite fibres were recorded within one Made Ground Sample. Laboratory analysis undertaken to quantify the amount of asbestos in soils has reported the mass to be <0.001% by weight within the sample.

In areas where buildings or hardstanding are proposed the risk will be negligible as this effectively acts as capping and breaks the Source - Pathway - Receptor linkage. Subject to proposed levels, HSP recommend that for all soft landscaped areas, a cover system should be provided, likely comprising a minimum 300mm of suitable topsoil / subsoil. In areas where growing provisions are required, i.e. farm / orchard, gardens, a minimum depth of 600mm of suitable topsoil / subsoil should be provided (subject to landscape architect requirements).

Ground gas monitoring has been undertaken on six occasions. Comparison of the results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls into a Characteristic Situation 1 and therefore, ground gas protection measures will not be required.

Testing to the Water UK Suite is beyond the scope of the investigation. However, the use of plastic water supply pipes is likely to be suitable if located in natural ground. However, specific targeted testing may be required by the utility provider once the water supply pipe route(s) have been confirmed.

The executive summary contains an overview of key findings and conclusions. However, no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

This report has been prepared to support a planning application. The brief provided by Kirklees Council indicates a new build school for children and young people with Social, Emotional and Mental Health needs at the former Deighton Centre site.

1.2 Client Brief & Scope

HSP Consulting Engineers Ltd has been commissioned by Frank Shaw Associates Ltd on behalf of Kirklees Council to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to development, preliminary parameters for design and recommendations for any mitigation measures to support a planning application.

The report presents the following information:

- a summary of the previous Geo-environmental Reports (Section 1.5 below),
- details of the ground investigation undertaken and the ground conditions encountered,
- details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed development, where appropriate, and providing preliminary parameters for foundation design.

The human health risk assessment reported within Section 5 follows the principals given in the Land Contamination Risk Management (LCRM) Guidance.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015+A1:2020 Code of Practice for Ground Investigations and BS10175:2011+A2:2017 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- Establish the geological and hydrogeological conditions using existing available/published information.
- Summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use.
- Produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors.

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken between the $17^{th} - 18^{th}$ November 2022 (windowless sampling) and between the $6^{th} - 8^{th}$ February 2023 (trial pitting and infiltration testing) and additional three rotary boreholes undertaken between the 24^{th} and 26^{th} April 2023.

1.5 Previous Reports

HSP Consulting Engineers Ltd have previously produced a Phase I Desk Study Report for the site, details of which can be found below:

 HSP Consulting Engineers Limited, Joseph Norton SEMH School, Huddersfield -Phase I Geo-Environmental Desk Study Report, December 2022, Ref: HSP2022-C4164-G-GPI-1137. (Ref 1.)

This Phase II Geo-environmental Assessment should be read in conjunction with the findings of the Phase I Desk Study referenced above.

2. Review of Existing Information & Geoenvironmental Setting

2.1 The Site

2.1.1 Location

The site is located in Deighton, a district located in the northeast of Huddersfield. The site is located off Deighton Road, land formerly occupied by the Deighton Centre. The approximate National Grid Reference for the centre of the site is (NGR) 415904, 419561. A Site Location Plan is included in Appendix I.

2.1.2 Description

The site is irregular in shape and is approximately 2.07Ha in area. Access is gained off Deighton Road in the south of the site.

The site was formerly occupied by the Deighton Centre, which was demolished in 2013 and is therefore now vacant land. Demolition drawings have been provided by the client. The 'Site Finishes Plan' (Drawing Ref: SE05) indicates the following activities were to be undertaken during demolition:

- Locate, disconnect and seal all redundant drains and connections (Drawing SE06 shows the disconnections of water feed, electricity and gas).
- Demolish identified buildings including removal of perimeter pathways, paving areas, signs, retaining walls, ramps, steps and hardstanding areas down to ground level including excavation of floor slab and foundations.
- Use suitably crushed demolition material to fill any below ground voids (presumably basement areas)
- Remove all excess demolition material off site
- Introduce 150mm layer of topsoil of former building footprint and seed.

No asbestos removal documentation has been provided.

It is also noted that that no post-demolition documentation has been provided.

While the building footprints have been removed in their entirety, the former access road and car parks remain; which generally appeared in good condition. Scrubland / overgrown greenspace occupies the former school area. A number of informal paths cut across this area, which are understood to be used by the general public. A public right of way footpath is located adjacent to the southwestern / west site boundary.

In the west of the site, a 'spring' was observed with water flowing down the bank and northwards down the site. The source of the water is unknown at this stage.

Topographically, the site lies towards the top of a natural ridge / slope. In regard to the wider area, the land to the west and southwest is at a similar level, whilst the land to the north, east and southeast falls away from the site. The topographical survey indicates the highest point on site is in the south, at approximately 136.50m AOD. The site falls away to the north, with

the lowest point recorded approximately 128.80m AOD (level difference of approximately 7.50m) and also falls to the east (towards the playing fields). Sections provided with the topographical drawing show the profile from the far west of the site and across the playing fields in the east. The section shows the far west of the site at approximately 133.25m AOD, with the most eastern point of the playing fields at approximately 105.75m AOD.

Although the levels across the playing field slope to the east, it is clear that the area has been terraced historically to create a suitable playing surface.

Mature / semi mature trees are present along the southern, western and northern site boundaries, with sporadic trees / shrubs within the central areas.

The site is generally unbound around the perimeter, with the exception of the southwest boundary with the Christ Church CE Academy; which consists of green palisade fencing. The east of the site is unbound, allowing access to the adjacent playing fields. The north of the site is bound by a woodland, which slopes down to the residential dwellings off Tenter Hill Lane.

2.1.3 Surrounding Land Use

The main features of interest identified are:

- North: Woodland / Residential dwellings.
- East: Playing Fields with residential dwellings beyond.
- South: Deighton Sports Arena, Deighton Road and residential dwellings beyond.
- West: Christ Church CE Academy and residential dwellings beyond.

2.1.4 Proposed End Use

Development plans at present show a new school in the north / centre of the site, with a range of external uses including parking / drop off, farm area, forest school, habitat area and Multi-Use Games Area (MUGA). It is not known whether development plans have been finalised at this stage. The proposed development plan is included within Appendix II.

2.2 Geology

2.2.1 Made Ground

The BGS mapping indicates an area of Made Ground (undivided) in the north of the site. Made Ground should be expected across the majority of the site where development has occurred (i.e. former buildings, existing access roads and car parks).

The playing fields to the east of the site are also recorded as Made Ground (undivided), presumably associated with the landfilling.

2.2.2 Superficial Deposits

The BGS mapping indicates the site is devoid of superficial deposits.

2.2.3 Bedrock Geology

BGS bedrock mapping indicates the site is underlain by mudstone, siltstone and sandstone of the Pennine Lower Coal Measures. Areas of sandstone are recorded in the southwest of the site and partially in the extreme northeast. The deposits are described by the BGS as *'Interbedded grey mudstone, siltstone and pale grey sandstone, commonly with mudstones containing marine fossils in the lower part, and more numerous and thicker coal seams in the upper part.'*

2.2.4 Coal Mining

The Published Coal Authority and geological information indicates that the potential for unrecorded probable workings at shallow depth (within 30m) of the surface are limited to the current access road within the southeast and therefore this section of the site is within Coal Authority High Risk Development Area. The remainder of the site indicates the potential for unrecorded probable shallow workings to be moderate, at a depth of 30m - 100m from surface and therefore this section of the site is not within the Coal Authority High Risk Development Area.

2.3 Local Authority Health Officer Communication

A Contaminated Land Enquiry was placed with Kirklees Council Contaminated Land Team on the 13th December. The following information has been provided.

- No determinations have been made by this Service under the provisions of the Environmental Protection Act 1990 regarding the classification of contaminated land on this site or sites in the neighbouring vicinity.
- No site investigation reports or remediation strategies for the site of interest have been submitted to this service for consultation.
- KC Ref 133 (The Deighton Centre, Deighton) lies approximately adjacent from the site of interest. Records suggest that in 1965 this was used as a spoil heap. The site was recorded as playing fields in 2009. There are no records of a waste disposal licence having been issued for this site. The waste type, depth, quantity, and date of filling is unknown. It is unlikely that there were any landfill gas and leachate controls installed here. Shallow spike surveys carried out on the tipped area between 1989 and 2003. Methane results between March 1989 and November 1993 range between 1.0% and 25.0% volume in air. Four results from September 1994, March 1995, May 1995 and July 2003 indicate methane concentrations of less than 0.1% and carbon dioxide between 4.0% and 0.5% (decreasing over time).

The correspondence is included within the Phase I Desktop Report.

2.4 Pertinent Site Sensitivity Information

Based on the information collated for the desk study, the geo-environmental setting of the site is summarised as follows:

- Historical mapping shows the site as undeveloped with Tenters (cloths stretched out to dry) on the earliest mapping, with no further changes shown until 1957 where Deighton Secondary School is shown. This remains until the buildings were demolished in 2013. The site remains vacant at present.
- Historically the surrounding land use has been undeveloped to the north and east, with development shown to the south and west. A pit is shown on the land to the east from 1957 before being shown as playing fields from 1966. Other notable industrial land uses include a Dye Works 110m southeast of the site and a Laundry 200m west of the site.
- An area of Made Ground is recorded in the north of the site on the BGS mapping. No superficial deposits are recorded. Bedrock geology of the Pennine Lower Coal Measures are expected beneath the site.
- The site is located within a coal mining area as defined by the Coal Authority. No past underground mining has been recorded, but unrecorded shallow workings are considered to be probable.
- The bedrock geology is classified as a Secondary A Aquifer. The site does not lie within a source protection zone.
- The site is located within an area which has a low risk for radon. No radon protection measures are required for any new development.
- A small historical landfill is recorded in the north of the site, shown as a Refuse Tip on the 1966 mapping. In addition, the playing fields to the east of the site are shown as an Environment Agency historical landfill.

3. Fieldwork & Factual Information

The intrusive works to date were carried out on the 17th and 18th November 2022 (windowless sample boreholes) and between 7th to 8th February 2023 (trial pitting / infiltration testing). Three rotary boreholes were undertaken between the 24th and 26th April 2023.Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 + A1:2020 Code of Practice for Ground Investigations (Ref. 6) and BS10175:2011+A2:2017 Investigation of Potentially Contaminated Sites (Ref. 8).

The exploratory holes to date were positioned across the site to provide information for foundation design and obtain representative soil samples for geotechnical and geoenvironmental analysis.

Following the windowless sample boreholes in November 2021, areas of deep Made Ground were targeted during the trial pitting exercise and subsequently by rotary boreholes.

Please note that the deeper boreholes utilised rotary open methodology with water as a flushing medium. With the exception of disturbed SPT samples, open hole methodology results in smalls fragments / change in flush colour which is utilised to determine the ground conditions.

The disturbed SPT samples were not obtained when the drillers believed they were drilling through competent sandstone material due to the risk of damage to the split spoon cone, and therefore a solid cone was utilised in these instances.

3.1 Exploratory Methods

The exploratory methods are detailed in the table below.

Туре	Quantity	Maximum Depth (m)	Details
Windowless Sampling Borehole	10	4.22	WS01 to WS10
Machine Excavated Trial Pits	5	3.20	TP01 – TP05
Infiltration Test Pits (Machine Excavated)	3	2.30	SK01 – SK03
TRL Probes	4	1.00	TRL01 – TRL04
Rotary Open Boreholes	3	15.43	RO01 – RO03

The exploratory holes were logged and sampled by an Engineer from HSP Consulting Engineers Ltd and the logs are presented in Appendix III. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix IV.

Fragmentary bulk, disturbed and undisturbed samples were recovered from materials revealed within all the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) was carried out at 1.00m intervals in the windowless sample boreholes to a maximum depth of 4.22m begl. SPTs were undertaken within the rotary open boreholes where possible, generally at 1.00m intervals to 5.00m and every 1.50m thereafter to a target depth of 15.00m begl. The SPTs were undertaken in accordance with EN ISO 22476-2 2005: A1 2011 and the results are included on the appended borehole logs (Appendix III).

Please note, within RO03, SPTs were not able to be undertaken between 1.00m and 4.00m due to the cobble / boulder sizes within the Made Ground material.

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Engineers Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been scheduled to be undertaken by a UKAS accredited laboratory as part of the works at the site:

- Natural Moisture Contents
- Plasticity Index

The laboratory testing is being undertaken by Professional Soils Laboratory PSL (UKAS accredited laboratory No.4043), accordance with BS 1377-2: 1990 using calibrated equipment specifically for British Standard. The results available are included within Appendix VI.

3.3.2 Chemical Analysis

~

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on twenty-five soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

Exploratory Hole Location & Depth	Sample Description	Exploratory Hole Location & Depth	Sample Description
WS01: 0.10m	MADE GROUND ^{1, 2, 3}	WS08: 1.00m	MADE GROUND 3, 4
WS02: 0.20m	MADE GROUND ^{1, 3}	WS08: 3.00m	CLAY ⁴
WS02: 1.00m	CLAY ⁴	WS09: 0.10m	MADE GROUND 1, 2, 3
WS03: 0.15m	MADE GROUND 1, 2, 3	WS09: 0.50m	MADE GROUND ³
WS03: 1.80m	CLAY ⁴	WS09: 1.00m	CLAY ⁴
WS04: 0.20m	MADE GROUND ^{1, 2, 3}	WS10: 0.15m	MADE GROUND 1, 2, 3
WS04: 0.50m	MADE GROUND 5	TP01: 0.10m	MADE GROUND 1, 2, 3
WS05: 0.70m	CLAY ^{1, 4}	TP01: 0.50m	MADE GROUND 1, 3
WS07: 0.30m	MADE GROUND ^{1, 2, 3}	TP02: 0.20m	MADE GROUND 1, 2, 3
WS07: 0.70m	CLAY ^{1, 4}	TP02: 0.60m	MADE GROUND ¹
WS07: 2.50m	CLAY ⁴	TP04: 0.20m	MADE GROUND 1, 2

WS08: 0.30m	MADE GROUND 5	TP05: 0.10m	MADE GROUND 1, 2
WS08: 0.60m	MADE GROUND ^{1, 3}		

¹ HSP Standard Suite, ² Organic Matter, ³ Asbestos Screen, ⁴ BRE Sulphate Suite ⁵ 10:1 Single Stage WAC

Table 2b – HSP Standard Chemical Analysis Suite

Metals	Cadmium	Chromium (III & VI)	Copper	
	Lead	Mercury	Nickel	
	Zinc	Vanadium		
Semi Metals and Non-metals	Arsenic	Boron	Selenium	
	Antimony			
Others	рН	Moisture Content	LOI	
Inorganic Chemicals	Cyanide	Sulphate	Sulphide	
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)	Phenol	

The contamination analysis was carried out by Chemtest Ltd (UKAS accredited, laboratory No. 2183) during the period 23rd – November 2022 to 4th January 2023.

Additional analysis was undertaken from samples obtained during the trial pitting exercise by i2 Analytical (UKAS accredited, laboratory No. 4041) during the period 10th February – 22nd February 2023.

All of the results are presented in Appendix V.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates the site is underlain by bedrock deposits of the Pennine Lower Coal Measures. No superficial deposits are recorded.

3.4.2 Ground Conditions Encountered

The exploratory hole data indicates Made Ground of variable depths, associated with demolition and backfilled basements on site, underlain by bedrock deposits of the Pennine Lower Coal Measures. The strata encountered on site generally comprises:

Та	Table 3 – Encountered Ground Conditions					
	Strata	Depth Range (mbegl)	Max Thickness (m)	Description		
		G.L – 0.40m	0.40	Grass overlying dark brown sandy gravelly clay (topsoil) with brick, aggregate, coal fragments, concrete, wood, slate, asphalt concrete		
		G.L – 0.12m	0.12	Asphalt concrete		
Anthropogenic	MADE GROUND	0.10 – 2.70	1.90	 Variable MADE GROUND comprising: Dark brown sandy gravelly clay with brick, aggregate and coal fragments. Rare metal. Yellow grey / brown clayey gravelly sand with brick, concrete, wood and sandstone. Occasional glass. Grey brown sandy gravel with brick, concrete, flint, aggregate and plastic Dark grey / black / red sandy gravel is asphalt concrete, brick, and concrete. Occasional ash. 		

		0.30 - <5.00	<4.70	Brown grey gravelly sand with cobbles and boulders of brick, concrete, asphalt, wire, metal, sandstone, rubber and ceramic. TP01 and RO03 (Former Basement)
Bedrock		0.60 - 3.00	2.40	Soft yellowish orange / greyish brown sandy gravelly CLAY with sandstone.
	PENNINE LOWER COAL MEASURES	0.15 – 3.00	1.70	Dense to very dense yellow / orange brown clayey gravelly SAND or GRAVEL with sandstone.
		0.80 – 2.40	1.50	Firm to stiff yellowish to greyish brown sandy gravelly CLAY with sandstone and mudstone.
		1.70 – 4.00	1.00	Extremely weak yellowish greyish brown weathered MUDSTONE.
		4.00 – 15.42	>11.42	Pennine Lower Coal Measures (MUDSTONE and SANDSTONE)

3.5 Groundwater Levels

Groundwater strikes were not recorded within the windowless samples boreholes or machine excavated trial pits. Groundwater levels have been recorded on six occasions within the ground gas monitoring installations, as detailed in the table below.

Borebole No	Installation Depth	Monitoring Date and depth to groundwater (m)					
Dorenoie No.	(m)	01.12.22	09.12.22	20.12.22	06.01.23	09.01.23	07.02.23
WS01	3.05	2.05	2.05	2.10	1.95	2.02	1.98
WS03	2.05	1.43	1.48	1.25	1.15	1.30	1.85
WS07	4.05	4.00	4.00	4.00	3.98	4.00	3.96
WS10	3.05	2.70	2.82	2.80	2.30	2.65	Dry

Table 4 – Groundwater Levels

3.6 Hazardous Ground Gas Monitoring

Ground gas monitoring installations were constructed within four of the windowless sample boreholes (WS01, WS03, WS07 & WS10). Each well has been constructed using 50mm diameter HDPE pipe. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are round lockable stopcock covers.

HSP Consulting uses a GFM 436 Gas Analyser. Prior to its use a calibration check is performed against gas readings in air. This check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix IX.

The results of the ground gas monitoring are discussed in Section 5.4 below.

3.7 Visual and Olfactory Evidence of Contamination

Ash was observed within Made Ground in WS07, between 0.12m and 0.45m begl. No other visual or olfactory evidence of contamination was noted during the intrusive works.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purpose of this geotechnical assessment, the information gained from the windowless sample boreholes and machine excavated trial pits have been utilised. The exploratory logs are presented in Appendix III.

4.1.1 Made Ground

Made Ground was recorded across the site, which was expected given the demolition of the former Deighton Centre. Around the periphery of the site, the surface comprised asphalt concrete over sand / gravels of aggregate to a maximum depth of 0.45m begl. The depths of Made Ground across the former building footprint varied to depths between 0.50m and 3.20m begl. It is understood that a basement was formerly located in the north of the site, which is understood to have been backfilled with demolition material. A trial pit (TP01) was positioned in this area to confirm the depths of Made Ground. Made Ground was encountered to a depth of 3.20m, before the sides of the pit began to spall and the pit terminated.

A rotary borehole (RO03) was undertaken adjacent to the location of TP01 to try and determine the full extent of the basement. During the advancement of the borehole, the drillers noted a change of strata / flush colour change from approximately 4.50m begl. The SPT 'N' value of 50 and the core run time increasing at 5.00m begl indicate drilling through natural coal measures strata. The change in colour appeared to be consistent of that noted within the other rotary borehole positions, indicating natural bedrock deposits of the Pennine Lower Coal Measures. The extent of the Made Ground in area of the basement is therefore considered to vertically extend no further than 5.00m, although may be shallower. Excavation with a larger machine excavator would be required to fully determine the vertical and lateral extent of the basement area.

Within WS04 and WS04a, both exploratory positions refused within Made Ground material resembling demolition rubble. A machine excavated pit was undertaken adjacent encountering this material to a depth of 2.70m, comprising brown grey gravelly cobbly sand with brick, concrete, metal, plastic, wire and sandstone. This was underlain by natural bedrock strata.

4.1.2 Pennine Lower Coal Measures

Bedrock deposits were recorded from between 0.15m which generally comprised a firm becoming stiff yellowish orange brown sandy gravelly CLAY with frequent sandstone and mudstone. Softer clay deposits were encountered in the north of the site, exhibiting lower SPT N values but comprising the same material elsewhere on site. The CLAY generally graded into a extremely weak weathered MUDSTONE to a maximum depth of 4.00m. The base of the deposits were not penetrated.

Deeper rotary boreholes were undertaken to a maximum depth of 15.42m, with orange / grey Pennine Lower Coal Measures strata encountered to these depths.

No evidence of coal seams/worked seams have been recorded although fractured/broken ground has been recorded from 3.2m to 5.2m begl within RO02.

4.1.3 In-situ Testing and Assessment

A series of Standard Penetration Tests (SPT's) were undertaken within the boreholes. The following table summarise the N values at depth across the site within the natural strata for the windowless sample boreholes.

Table 5a – SPT N Values				
Depth (m)	Range of 'N' Values	Mean 'N' Value	Description	
1.00	5 - 50	28		
2.00	2 - 50	30	COAL MEASURES	
3.00	6 - 50	32	(CLAY / SAND)	
3.60 - 4.00	50	50		
5.00 – 5.20				
6.50 - 6.70				
8.00 - 8.20	5			
9.50 – 9.70		COAL MEASURES		
11.00	(All SPTs refused from 5.00m	COAL MEASURES		
12.50 – 12.70	boreholes – 50 blows for le			
14.00 – 14.20				
15.00				

Seven plasticity index and moisture content tests have been undertaken in the laboratory on disturbed samples of the fine deposits obtained from the windowless sample boreholes. The results indicate compliance with the definition of soils of high (CI) plasticity after the classification system of BS5930: 2015 + A1:2020. The samples are considered to be of low volume change potential in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2007.

Sample Ref:	Laboratory Material Descriptions	LL (%)	PL (%)	PI (%)	% passing 425µm	Modified PI (%)*	Soil Class	MC (%)
WS03: 1.00m – 1.30m	Brown very gravelly sandy CLAY	45	22	23	74	17		17
WS05: 0.80m – 1.00m	Brown slightly gravelly sandy CLAY	38	21	17	97	16.5		16
WS07: 1.50m – 1.80m	Brown very gravelly very sandy CLAY	36	19	17	71	12		16
WS07: 2.70m – 3.00m	Brown slightly gravelly sandy silty CLAY	37	21	16	98	15.7	CI	18
WS08: 2.70m – 3.00m	Brown gravelly sandy CLAY	38	22	16	87	13.9		22
WS09: 1.80m – 2.00m	Brown gravelly sandy CLAY	37	19	18	89	16		17
WS10: 0.70m – 1.00m	Brown gravelly sandy CLAY	38	21	17	88	15		26

 Table 6 - Plasticity and Volume Change Potential

The geotechnical laboratory results are included in Appendix VI.

4.2 Earthworks

The topographical survey indicates the highest point on site is in the south, at approximately 136.50m AOD. The site falls away to the north, with the lowest point recorded approximately 128.80m AOD (level difference of approximately 7.50m) and also falls to the east (towards the playing fields).

Parts of the site are expected to have been terraced / levelled to accommodate the former building footprint and externals.

Given the level changes across the site, it is considered that earthworks are likely to be required to create a level development platform. Natural near surface soil arisings generated on site may be suitable for use as engineered fill on site, subject to appropriate testing and assessment. Should materials prove to be suitable, placement and compaction would need to be strictly controlled and supervised. Project programming should consider the 'earthworks window' (prevailing dry & warm climatic conditions) as the soil materials will be susceptible to softening during periods of wet weather and will be easily damaged by site traffic and deterioration at times of heavy rainfall.

4.3 Foundations

Development plans indicate a new build school on site. Proposed loadings and levels have not been provided at this stage. Based on the ground conditions encountered, the general downward succession was identified as Made Ground recorded to shallow depths (<0.90m begl)| across the majority of the site area. Deeper Made Ground (up to a maximum extent of 5.00m begl) was recorded in the north of the site associated with backfilling of the former basement. A further area of deep Made Ground (proven to 2.70m begl) is located in the west of the site. The Made Ground overlies the bedrock deposits of the Pennine Lower Coal Measures which are recorded as firm becoming stiff cohesive deposits in the central and southern area and as soft cohesive deposits from 0.60m to 3.50m begl in the north. A lower SPT 'N' value of 8 was recorded within RO01 at 1.20m, with the number of blows increasing with depth.

No evidence of coal seams/worked seams have been recorded although fractured/broken ground has been recorded from 3.2m to 5.2m begl within RO02, where flush returns reduced before returning to consistent levels.

The present scheme (2. L-2352-SKE-6000-Spacial Arrangement Plan_R05, dated 7th Mach 2023) indicates the proposed building footprint will be partly on firm to stiff cohesive deposits (central/western and southern) and partly on areas of deeper Made Ground and soft cohesive deposits (north).

Although the depth of the former basement was approximated, the lateral extent of the backfill in the north are unknown and further areas of deeper Made Ground can't be discounted.

All foundations will need to be taken below any Made Ground materials as these are not considered a suitable founding stratum.

Traditional strip or pad foundations could be utilised within the firm to stiff cohesive deposits in the central and southern site areas at minimum depths of 0.75m begl to a net allowable bearing pressure of 100kN/m², increasing to 200kN/m² at 2.00m begl to limit total settlements to less than 25mm and differential settlements to acceptable limits. As mentioned above, lower strength soils were observed within RO01 (SPT 'N' Value of 8 at 1.20m) and therefore some localised deepening will be required where softer soils are encountered on site. However, in part the proposed building footprint overlies significantly deeper Made Ground and soft cohesive deposits that are not considered suitable for a traditional foundation. Due to these constraints, traditional foundations are unlikely to be feasible within this area and a piled foundation solution should be considered with piles extending into the competent mudstone strata encountered from 4.00m begl. Any piling solution would need to be designed and warranted by a specialist subcontractor.

An alternative solution would be to excavate the existing Made Ground materials and soft cohesive deposits below the proposed building footprint and replace with engineered fill to an appropriate specification to limit long term settlements. This method would provide an allowable bearing pressure to that achievable by the engineered fill following placement.

Should development plans alter, an engineer from HSP should be consulted and foundation assessment revised.

Foundations (and ground floor slabs) should be designed in accordance with NHBC Standards Chapter 4.2 Building near Trees (Ref. 9) where foundations are within influencing distance of proposed or existing trees in accordance with the requirements for soils of low volume change potential.

4.4 Ground Floor Slab

Based on the current layout, the proposed building footprint will be located within areas where the depth of Made Ground is in excess of 600mm, and therefore a suspended floor slab is recommended. It may be possible to adopt a ground bearing floor slab where existing Made Ground materials and soft cohesive deposits are replaced with engineered fill below the proposed building footprint, providing placement and compaction of any fill material is in accordance with the relevant earthworks specification and testing to confirm compliance to verify the fill materials once the earthworks are completed.

Further confirmation should be sought at detailed design stage once the final layout, levels and type of foundation have been confirmed.

4.5 Excavations

Excavations to proposed formation level for new foundations and infrastructure should be feasible using standard excavation plant and equipment. Random and potentially severe falls

should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site. TP01 was excavated to 3.20m where Made Ground material (demolition) was encountered and the sides of the pit were spalling from 1.00m depth.

Where personnel are required to enter near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

No groundwater was encountered during the ground investigation, however, it should be noted that groundwater levels may vary due to seasonal variations or other effects. Traditional sump and pump dewatering is likely to be sufficient for any groundwater ingress encountered.

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'brownfield' location with static groundwater for the purposes of the concrete classification.

The bedrock geology of the Coal Measures has the potential for pyrite to be present which has been considered in the below assessment.

The natural soils encountered are generally considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1s.

Should Made Ground materials be retained on site and concrete foundations / slabs come into contact with the material, it is considered appropriate to adopt a basic Design Sulphate Class of DS-3 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-2s, based on worst case results within Made Ground material.

4.7 Pavement Design

The TRL (Transport Research Laboratory) Dynamic Cone Penetrometer (DCP) tests were undertaken at four locations to a maximum depth of 1.00m begl. The TRL DCP probe is used for rapid in-situ measurement of the subgrade strata, which are converted to equivalent CBR values. Where layers have different strengths, the boundaries can be identified and an equivalent CBR value can be calculated for each layer. The unit incorporates an 8kg weight with a drop of 575mm, and a 20mm diameter cone fitted to the end of the shaft, allowing measurements to be made down to a depth of approximately 1.00m.

TRL01 only encountered variable Made Ground materials to a refusal depth of 0.58m. The remaining TRL02 – TRL04 encountered Made Ground overlying natural strata. For the purpose of this exercise, the variable Made Ground results have been discounted.

The natural strata was encountered from depths of 0.30m and 0.60m begl and was noted as predominately gravelly/sandy clay or clayey gravelly sand The CBR% calculated within the natural strata ranged between 16-17%. Due to the gravel content within the natural strata, the TRL probe results can't be relied on for design and should be used as a guide only.

Once final proposed development layout plans and levels are known, it is recommended insitu CBR testing is conducted in areas of any proposed roads or car parking to confirm a value for design.

The results from the TRL Probes can be found within Appendix VII.

4.8 Infiltration Drainage

Infiltration testing was undertaken as part of the ground investigation to assess the suitability of the soils for surface disposal by infiltration (soakaways). The testing was undertaken at the site between the 7th and 8th February 2023 at three locations. Machine excavated pits were advanced to depths between 1.30m and 2.30m begl. The tests were conducted in accordance with BRE Digest 365 (2016 - Ref 20) with the exception of SK02 that was undertaken twice due to time constraints.

The calculated infiltration rates from the testing range between 3.57×10^{-4} m/s and 9.99×10^{-5} m/s within SK01 and SK03. SK02 was noted to comprise more clay content, with infiltration rates ranging between 1.41×10^{-5} m/s and 1.52×10^{-6} m/s The results of the preliminary soakaway testing suggest that the site will be suitable for soakaway drainage.

Any infiltration drainage utilised within the scheme will need to take into consideration the elevated PAH and lead identified at some locations within the shallow Made Ground.

The infiltration test certificates can be found within Appendix VIII.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in the Land Contamination Risk Management (LCRM) Guidance, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available, or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 10 and 11 respectively).

In the absence of a standard scenario for a school environment the standard exposure scenario of residential without home grown produce is usually used to identify potential exposure pathways for human health receptors. However, given the provision for planting on the proposed development plan (farm / gardens), the standard exposure scenario of residential with home grown produce has been used. Controlled water, flora and fauna and property receptors have also been included within the CSM.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1% Soil Organic Matter (SOM).

The assessment of PAHs is undertaken using the surrogate marker approach, recommended by Health Protection Agency (2010) guidance, providing the PAH profile is sufficiently similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs. Profiling is considered appropriate for the majority of samples.

5.2 Assessment of Soil Analysis Results

Twenty-five samples, as detailed in section 3.3.2, were scheduled for analysis from the development area. Seventeen of these samples were scheduled to provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential with home grown produce setting were exceeded for lead in one location and polyaromatic hydrocarbons (PAHs) across seven locations from samples within the Made Ground.

Details of the exceedances can be seen in Table 7 below. The results for the remaining contaminants of concern were below the screening criteria for individual contaminant concentrations.

Contaminant	GAC (mg/kg)	No. of exceedances	Concentration (mg/kg), sampling location and depth (m)
Lead	200 ²	1	380 – WS10 0.15m
			24.0 – WS01: 0.10m
			98.0 – WS03 0.15m
			20.0 – WS04: 0.20m
Benzo(a)pyrene (surrogate marker)	5.0 ³	7	8.7 – WS09 0.10m
			13.0 – TP01: 0.10m
			12.0 – TP04 0.20m
			12.0 – TP05: 0.10m
Naphthalene	2.3 ¹	1	3.3 - TP04: 0.20m
Benzo(a)anthracene	7.2 ¹	2	11 - TP04: 0.20m 11 - TP05: 0.10m
Benzo(a)pyrene	2.2 ¹	2	12 - TP04: 0.20m 12 - TP05: 0.10m
Dibenzo(a,h)anthracene	0.24 ¹	2	1.4 - TP04: 0.20m 1.2 - TP05: 0.10m

Table 7 – GAC Exceedances – residential with home grown produce

¹S4UL, ²C4SL ³C4SL (surrogate marker approach)

In addition, thirteen soil samples were screened for asbestos. Loose amosite fibres were recorded within TP01 at 0.50m begl, with made ground demolition materials. Laboratory analysis undertaken to quantify the amount of asbestos in soils has reported the mass to be <0.001% by weight within the sample.

No asbestos was identified in the remaining samples.

5.3 Human Health Mitigation

The concentration of lead and PAHs recorded at the site are considered to pose a potential risk to the proposed end users and construction workers.

The exceedances were encountered across eight locations within Made Ground material identified between ground level and 0.40m begl. It is therefore considered that the Made Ground on site is not suitable for the proposed end use and that remediation will be required in the form of a cover system for all soft landscaped areas.

In areas where buildings or hardstanding are proposed the risk will be negligible as this effectively acts as capping and breaks the Source - Pathway - Receptor linkage.

Subject to proposed levels, HSP recommend that for all soft landscaped areas, a cover system should be provided, likely comprising a minimum 300mm of suitable topsoil / subsoil. In areas where growing provisions are required, i.e. farm / orchard, gardens, a minimum depth of 600mm of suitable topsoil / subsoil should be provided (subject to landscape architect requirements).

Made Ground topsoil / subsoils may be suitable to raise levels beneath soft landscaped areas, providing a suitable break layer is provided between the material and the proposed cover system.

It is considered that all topsoil required for the proposed development will require importing. Any topsoil imported will need to be compliant with BS: 3882:2015 Specification for Topsoil (Ref 21) and suitable for use.

It should be noted that levels may dictate the need to remove made ground materials to an appropriately licensed waste management facility.

Asbestos was identified within a single Made Ground soil sample. Any work on the site which will potentially disturb the made ground (excavations, vehicle movements etc) should be assessed. Mitigation should be adopted through site specific risk assessments and working methodologies (Control of Asbestos Regulations, 2012) and have the appropriate controls in place to limit any exposure to site workers and surrounding land users.

A Remediation Strategy detailing the above and subsequent verification with sampling, analysis and reporting will be required.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

All construction and maintenance workers operating at the site should be advised of the potential for contact with elevated concentrations of lead / PAHs and the potential for asbestos containing materials on site. Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to contaminated soils and dust.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.4 **Protection of Controlled Waters**

Exceedance of lead and PAHs have been recorded within shallow Made Ground materials. The potential for leaching contaminants is considered limited within the underlying Lower Coal Measures which have recorded predominately fine deposits with occasional granular lenses grading into a mudstone. The closest surface water course is located 107m north and the

underlying Coal Measures are classified as a Secondary A aquifer. On this basis the risk posed to controlled waters is considered very low.

5.5 Ground Gas Risk Assessment

Six ground gas monitoring visits have been undertaken within the windowless borehole installations over a nine week period in order to obtain an indication of the ground gas regime at the site. The atmospheric pressures ranged between 1003mbar and 1037mbar.

The results of monitoring to date indicate that methane has not been recorded above the limits of detection. Carbon dioxide has been recorded at concentrations up to a maximum 3.0% by volume in air within WS10. Steady state gas flows have been recorded between 0.3 - 0.6 l/hr. The worst case of 0.6 l/hr has been used for this assessment.

The monitoring data aligns with information provided by Kirklees regarding the landfill adjacent to the site, with shallow spike surveys carried out with results from September 1994, March 1995, May 1995 and July 2003 indicating methane concentrations of less than 0.1% and carbon dioxide between 4.0% and 0.5% (decreasing over time). See the Phase I Desktop Report (Ref. 1) for further details.

From the results above, the maximum steady state gas screening value for the site is 0.018 l/hr.

The results have been assessed in line with the guidance provided in BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 15) and CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 16). Comparison of these results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls into a Characteristic Situation 1 and therefore, ground gas protection measures are not required.

The results of the ground gas monitoring can be found in Appendix IX.

5.6 Water Supply

The environmental testing for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Water UK Contaminated Land Assessment Guidance (January 2014).' (Ref. 19).

Testing to the Water UK Suite is beyond the scope of the investigation. However, it is noted that natural ground occurs at shallow depths (from 0.70m begl) across the majority of the site and there is no measured indicative organic contamination (petroleum hydrocarbons, phenols) that is likely to be detrimental to the use of plastic water supply pipes within the natural soils tested.

The use of plastic water supply pipes is likely to be suitable if located in natural ground. However, specific targeted testing may be required by the utility provider once the water supply pipe route(s) have been confirmed. Water supply pipes should be placed at a minimum depth of 0.75m below the finished ground level(s) (to the top of the piping).

5.7 Waste Classification

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, HazWasteOnlineTM. Testing has been undertaken on the made ground materials and on limited samples of the underlying natural clay. The results indicate the material is likely to be classified non-hazardous waste with the exception of one sample, TP04 – 0.20m begl, which is likely to be classified as Hazardous. The results are included in Appendix X.

Two waste acceptance criteria (WAC) tests were also undertaken on Made Ground samples from across the site.

The sample taken from WS04 - 0.50m is recorded at the inert threshold for Total Organic Carbon content (TOC). However, Dissolved Organic Carbon at C₀ is at a suitable level and therefore the material is considered to Pass this classification.

The sample taken from WS08 - 0.30m exceeds the threshold for Total PAHs and therefore fails the inert threshold.

Loose amosite fibres were recorded within TP01 at 0.50m begl, with made ground demolition materials. Laboratory analysis undertaken to quantify the amount of asbestos in soils has reported the mass to be <0.001% by weight within the sample and therefore the classification remains Non-Hazardous.

Please note the above classification provides an indication of how the material should be classified for removal off site; however, this should be used at your approved waste handler's discretion and further testing may be required prior to any offsite disposal.

The decision of the disposal facility to accept/reject the waste is final and there is no obligation for any facility to accept the waste.

5.8 Updated Conceptual Site Model

The PCSM and Summary of plausible pollutant linkages was produced by undertaking a Source-Pathway-Receptor analysis of the site using readily available online information and previous reports. Based on the findings of this and the site investigation the updated conceptual site model has been updated and is presented in the table below.

Table 8 - Updated Conceptual Site Model.							
Source	Pathway	Receptor	Consequence	Probability	Risk		
	P1: Human uptake pathways	R1: End Users R2: Construction and Maintenance workers	Medium	Medium Likely		The screening process for on-site hum risk for a residential with homegrown soils. The risk to end users and propose In areas where buildings or hardstand	
	P5: Root uptake.	R5: Proposed Flora and fauna	Mild	Unlikely	Very Low	as capping and breaks the Source - Pa system will be required including top Specification for Topsoil. A remediation	
On Site S1: Historical and Contemporary land use: Made Ground associated with former buildings on site and their demolition.	 P2: Horizontal and vertical migration of mobile contaminants through potentially permeable soils and rocks. R3: Controlled Water and Groundwater 		Mild	Unlikely	Very Low	Exceedance of lead and PAHs have be potential for leaching contaminants is co which have recorded predominately fine mudstone. The closest surface water co are classified as a Secondary A aquifer VERY LOW	
	P3: Underground services and foundations could be potentially directly affected by the presence of contaminated soils or groundwater	R4: Services and structures	Medium	Unlikely	Low	Testing indicates it is considered appro- with an Aggressive Chemical Environme Ground materials, a Design Sulphate C for Concrete (ACEC) of AC-2s will be re Testing to the Water UK Suite is beyon ground occurs at shallow depths (from 0 supply pipes is likely to be suitable if loc required by the utility provider once the	
Off Site S2: Historical & Contemporary Land Use: Agricultural Land, residential development, Laundry, Dye Works	P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks	R1: End Users	Minor	Unlikely	Very Low	The potential sources of off-site contam risk from associated from off-site source	
On and Off Site Gas Sources S3: Ground Gases	P4: Vertical and lateral migration of ground gases and/or vapour.	R1: End Users	Minor	Unlikely	Very Low	Ground gas monitoring to date has cont mitigation is not considered to be require	

Comments

an health receptors show that the GACs, representative of minimal produce setting, were exceeded within the shallow Made Ground sed flora / fauna is considered to be MODERATE.

ing are proposed the risk will be negligible as this effectively acts Pathway - Receptor linkage. In areas of soft landscaping, a cover opsoil which would need to be compliant with BS:3882:2015 In statement and subsequent verification will be required.

een recorded within shallow Made Ground materials. The considered limited within the underlying Lower Coal Measures are deposits with occasional granular lenses grading into a course is located 107m north and the underlying Coal Measures r. On this basis the risk posed to controlled waters is considered

opriate to adopt a basic Design Sulphate Class of DS-1 together ent for Concrete (ACEC) of AC-1s within natural soils. Within Made Class of DS-3 together with an Aggressive Chemical Environment required.

nd the scope of the investigation. However, it is noted that natural 0.70m begl) across some areas of the site. The use of plastic water wated in natural ground. However, specific targeted testing may be e water supply pipe route(s) have been confirmed.

nination are considered to be limited and the pathway unlikely. The ces is considered to be VERY LOW.

firmed a Classification of a Characteristic Situation 1. Ground gas red for any new buildings. The risk is considered to be VERY LOW.

6. Development Constraints

The following development constraints have been identified and should be considered further;

6.1 Soft Strata and Deep Made Ground

Low SPT 'N' values have been recorded in the north of the site, in natural and Made Ground Strata. In addition, deep Made Ground has been identified in areas across the site, including where the former basement of the Deighton Centre was located. Traditional strip / pad foundations are unlikely to be suitable in the areas where soft strata / deep Made Ground have been identified.

It is recommended the vertical and lateral extent of the former basement is confirmed utilising a larger excavator to dig trenches. The trench sides would possibly require supporting where loose made ground causes the pit sides to spall.

6.2 Elevated level of contaminants

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential with home grown produce setting were exceeded for lead in one location and polyaromatic hydrocarbons (PAHs) across seven locations. The soils on site are not considered to be suitable for use within an educational facility setting. In areas where buildings or hardstanding are proposed the risk will be negligible as this effectively acts as capping and breaks the Source - Pathway - Receptor linkage. In soft landscaped areas, a cover system should be provided.

A Remediation Strategy detailing the above and subsequent verification with sampling, analysis and reporting will be required.

7. References

- HSP Consulting Engineers Limited, Joseph Norton SEMH School, Huddersfield Phase I Geo-Environmental Desk Study Report, December 2022, Ref: HSP2022-C4164-G-GPI-1137.
- 2. BRITISH GEOLOGICAL SURVEY. 1:50,000 Mapping Sheet Number 77, Huddersfield, 2003, Bedrock and Superficial
- 3. British Geological Survey Lexicon Search <u>http://www.bgs.ac.uk/lexicon/</u>
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:2015 +A1:2020 Code of Practice for Site Investigations.
- 7. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 8. BS10175:2011 +A2:2017 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 11. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 15. BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings
- 16. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- 17. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Appendix E Provisional C4SLs for Benzo(a)pyrene as a surrogate marker for PAHs.
- 18. www.environment-agency.gov.uk
- 19. UK Water Industry Research, Guidance for the selection of water supply pipes to be used in Brownfield sites, Ref:10/WM/03/21.
- 20. BRE Digest 365, Soakaway Design. Revised 2016
- 21. BS3882:2015. Specification for Topsoil.
- 22. WM3 Environment Agency (2021) Guidance on the classification and assessment of waste (v1.2.GB 2021).
- Waste Classification: Guidance on the Classification and Assessment of Waste (v1.2.GB 2021) – Technical Guidance WM3.

Appendix I

Appendix II

The use of drawings by the Customer acts as an agreement to the following statements. The Customer must not use the drawings if it does not agree with any of the following statements:

All drawings are based upon site information supplied by third parties and as such their accuracy cannot be guaranteed. All features are approximate and subject to clarification by a detailed topographical survey, statutory service enquiries and confirmation of the legal boundaries. Do not scale the drawings. Figured dimensions must be used in all cases. All dimensions must be checked on site. Any discrepancies must be reported in writing to Colour-UDL before proceeding. All drawings are copyright protected. Refer to full Terms & Conditions at www.colour-udl.com

Calculation		Drawn on Plan	
door PE	332 m²	as per BB104 MUGA guideline	593 m²
rmal and social area	864 m²	Hard informal and social area	864 m²
nal and social area	864 m²	Lower Years Passive Space	400 m ²
		Upper Years Passive Space	400 m ²
		Class Gardens	815 m ²
		Farm	1900 m ²
	332 m²	Habitat/ Forest School*	5524 m²
	3688 m²	Float	3688 m²
		Building	2852 m ²

* incl. Entrance Orchard area

• The location would be part in sun and part shaded - pending further solar studies there should be plenty of sun for raised beds / crops

• There is a natural relationship with existing natural habitats and the proposed Security was, the location isn't too exposed to the public or car park

• Access would be good and shared for deliveries with the kitchen

.05	Updated building	07.03.23	тк	PO
.04	Revised layout	03.03.23	тк	PO
<u>.</u> 03	Revised layout	02.03.23	тк	PO
.02	Revised layout	21.02.23	тк	PO
01	First Issue	16.02.23	тк	PO
Rev	Amendments	Date	Drwn	Chkd

Project Kirklees SEMH School, Deighton

Drawing Title Spacial Arrangement Plan

Project No. 2352	Scale @ A3 1: 750	Project Status For Approval
Drawing No. L-2352-SKE-6000		Revision 05
London Newcastle York	0203 924 9888 0191 24 24 224 01904 925 888	colour

colour-udl.com

Appendix III

									Borehole No.	
				Borehole Log				WS01		
con	suit	Ing							Sheet 1 of 1	
Projec	t Name:	St Joseph	Nortor	n SEMH School	roject No. 4164		Co-ords:	415922.00 - 419504.00	Hole Type WS	
				0	-10-1				Scale	
Locati						Levei:		1:50		
Client	:	Frank Sha	w Asso	ociates Ltd	T	1	Dates:	17/11/2022 - 17/11/2022	Logged By MK	
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)				
		0.10	TJ		0.20			MADE GROUND: Grass overlying slightly gravelly sandy clayey topso	lark brown il. Sand is	
					0.30			fine to coarse. Gravel is fine to coar	se, sub	-
		0.60	TJ					MADE GROUND - Dark brown sligh	ntly gravelly	
	1	1.00	Т		0.90			to coarse, sub angular of brick, agg	Fravel is fine regate and 1	_
		1.00		N=10 (3,2/3,2,3,2)				coal fragments.	vn slightly	
		1.50 - 1.70	в					clayey gravelly sand. Sand is fine to	coarse.	
	2							rounded of brick, concrete, wood ar	r to sub nd sandstone.	•
		2.00	Т					Firm becoming stiff yellowish to gre sandy gravelly CLAY. Sand is fine to	yish brown	_
	2	2.00		N=39 (12 13/11 12 9 7)				Gravel is fine to coarse, sub angula	r of	
	5			(12,13/11,12,3,7)	2.40			Extremely weak yellowish greyish b	e. rown	-
								weathered MUDSTONE.		
		3.00		N=50 (9,12/50 for	3.00			End of borehole at 3.00 m	3	_
				255mm)						
										-
									4	_
										-
									5	_
										-
									6	_
										-
									7	_
										-
									8	_
										-
									9	_
										-
									10	_
Rema	rks		during the	drilling process			I			
2. Boreh 3. Gas a	ole was ter nd water m	minated at 3.00m	due to re alled to 3	fusal. .00m depth.					AGS	
		10							Borehole N	No.
-----------------	------------------	---------------	--------	--	---------------------------	--------------	--------------	--	------------------	--------
n	S	ρ				Bo	reho	ole Log	WS02	2
con	sult	ing					1	U	Sheet 1 of	f 1
Projec	t Name:	St Joseph	Norto	n SEMH School	roject No.		Co-ords:	415897.00 - 419516.00	Hole Type	е
					4104				Scale	
Locati	on:	Hudderstie	eld				Level:		1:50	
Client		Frank Sha	w Ass	ociates Ltd			Dates:	17/11/2022 - 17/11/2022	Logged B MK	By
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	I	
		Deptil (III)	Type	Results	0.08			MADE GROUND - Asphalt concrete).	
		0.20	TJ		0.30			MADE GROUND - Yellow grey sligh	ntly gravelly	
X								coarse, sub angular of aggregate.		/ -
								GRAVEL. Sand is fine to coarse. G	ravel is fine to	
		1.00 1.00	Т	N=38	1.00			coarse, sub angular of sandstone. Stiff greyish yellow sandy gravelly C	LAY. Sand is	1 -
				(9,9/7,10,11,10)				fine to coarse. Gravel is fine to coar	se, sub	
					1 70					-
		2.00		N-50	2.00			Extremely weak yellowish greyish b weathered MUDSTONE.	rown	
]	2.00		(7,11/13,10,13,14)	2.00			End of borehole at 2.00 m		2 -
										3 -
										-
										4 -
										-
										5 -
										6 -
										-
										7 -
										-
										8 -
										: م
										-
										10 -
Rema	rks		·			1				
1. NO 2. Bor	ehole w	as terminated	at 2.0	000 0000000000000000000000000000000000	y process. fusal and b	ackfilled v	vith arising	s.	AGS	S

									Borehole No.) <u>.</u>
n	S	p				Bo	reho	ole Log	WS03	
con	SUIT	Ing					-1	•	Sheet 1 of 1	
Projec	t Name:	St Joseph	Norto	n SEMH School	oject No.		Co-ords:	415886.00 - 419567.00	Hole Type	
				0.	+104				Scale	
Locati	on:	Hudderstie	eld				Level:		1:50	
Client	:	Frank Sha	w Ass	ociates Ltd		1	Dates:	17/11/2022 - 17/11/2022	Logged By MK	
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Leaend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)				
19. 19.		0.15	TJ		0.25			MADE GROUND - Grass overlying slightly gravelly sandy clayey topso	dark brown il. Sand is	-
					0.50			fine to coarse. Gravel is fine to coar	se, sub	-
		0.60	TJ		0.00			MADE GROUND - Dark yellowish b	prown sandy	-
		1.00		N=15 (11 10/6 3 3 3)	0.80			gravelly clay. Sand is fine to coarse fine to coarse, sub angular of sands	. Gravel is stone,	1 —
		1.00 - 1.30	В					aggregate and brick.	CLAX Sand	' :
								is fine to medium.	CEAT. Sand	-
	•	4.00	_					Stiff becoming very stiff greyish yell gravelly CLAY. Sand is fine to coars	ow sandy se. Gravel is	-
		1.80		50 (6 6/50 for	2 00			fine to coarse, sub angular of sands	stone.	2 –
		2.00		115mm)	2.00			End of borehole at 2.00 m		<u>۔</u>
										-
										-
										-
									2	4 -
									;	э —
										-
										6 -
										-
										-
									-	7 -
										-
										-
									\$	8 -
										-
										-
									ļ	9 -
										-
										-
									10	0 -
Rema	rks	water was and		red during the drilling						
2. Bor	ehole wa	as terminated	at 2.0	00m due to refusal.	y process.				AGS	

3. Gas and water monitoring well installed to 2.00m depth.

									Borehole No	<u>э.</u>
n	S	ρ				Bo	reh	ole Loa	WS04	
con	sult	ing							Sheet 1 of 1	1
Projec	t Name:	St Joseph	Norto	n SEMH School	Project No C4164).	Co-ords:	415887.00 - 419542.00	Hole Type WS	
Locati	on:	Huddorsfie	ald				L ovol:		Scale	
LUCau	011.	Thuudershe					Level.		1:50	
Client		Frank Sha	w Ass	ociates Ltd			Dates:	17/11/2022 - 17/11/2022	Logged By MK	
Well	Water Strikes	Samples	s and	In Situ Testing	Depth (m)	n Level (m)	Legend	Stratum Description	1	
	Strikes	Depth (m)	Type	Results 50 (25 for 90mm/s for 95mm)	(m) 50 0.40 0.60	(m)		MADE GROUND - Grass overlying sandy gravelly clay with occasional Sand is fine to coarse. Gravel is fine sub angular of aggregates, bricks a fragments. MADE GROUND - Grey brown san Sand is fine to coarse. Gravel is fine sub angular of brick, concrete, flint, and plastic. End of borehole at 0.60 m	dark brown rootlets. e to coarse, nd slate dy gravel. e to coarse, aggregate	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -
									1	10 -
1. No 2. Bor	groundw ehole wa	vater was enc as terminated	ounter at 0.6	red during the dril Om due to refusa	ling proces I on obstru	s. ction.			AGS	

	C	5							Borehole No.	_
	5	Ρ				Bo	reho	ole Log	WS04A	
con	sult	ing						0	Sheet 1 of 1	
Projec	t Name:	St Joseph	Norto	n SEMH School	Project No. C4164		Co-ords:	415887.00 - 419543.00	Hole Type WS	
Locati	on:	Huddersfie	eld				Level:		Scale	
									1:50	-
Client:		Frank Sha	w Ass	ociates Ltd		I	Dates:	17/11/2022 - 17/11/2022	MK	
Well	Water Strikes	Samples	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.60		50 (25 for 70mm/50 for 85mm)	0.40			MADE GROUND - Grass overlying sandy gravelly clay with occasional Sand is fine to coarse. Gravel is fine sub angular of aggregates, bricks a fragments. MADE GROUND - Grey brown san Sand is fine to coarse. Gravel is fine	dark brown rootlets. e to coarse, nd slate dy gravel.	
								sub angular of brick, concrete, flint, and plastic.	aggregate	
								End of borehole at 0.60 m		-
									2	2 -
										_
									3	; -
										-
									4	ı –
										-
									5	; -
										-
									6	s –
										-
									7	' -
										-
									8	3 –
										-
									g) —
										-
Rema	rke								10	
1. No 2. Bor	groundv ehole wa	vater was enc as terminated	ounter at 0.6	red during the drilli Om due to refusal	ng process. on obstructi	on.			AGS	

									Borehole No).
n	S	p				Bo	reho	ole Log	WS05	
cons	ult	Ing							Sheet 1 of 1	
Project N	lame:	St Joseph	Nortor	n SEMH School	Project No.		Co-ords:	415952.00 - 419545.00	Hole Type	
				ľ	04104				Scale	
Location	1:	Hudderstie	eld				Level:		1:50	
Client:		Frank Sha	w Asso	ociates Ltd			Dates:	17/11/2022 - 17/11/2022	Logged By MK	
Well St	Vater trikes	Samples	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Deptn (m)	туре	Results	0.05	(,	******	MADE GROUND - Asphalt concrete	<u>.</u>	
		0.20	TJ		0.15			MADE GROUND - Dark grey black	sandy gravel.	
					0.40			angular of asphalt concrete, brick a	nd occasional	-
		0.70 0 80 - 1 00	TJ B					Concrete. MADE GROUND - Dark grey browr	n sandy	
		1.00		N=50 (9,12/50 for	· 1.00			gravelly clay. Sand is fine to coarse	. Gravel is	1 -
				235mm)				and brick.		
								very sandy gravelly CLAY. Sand is f	ine to coarse.	-
								Gravel is fine to coarse, sub angula sandstone and occasional mudston	rof	
								End of borehole at 1.00 m		2 -
										-
										3 -
										-
										4 -
										5 -
										5
										_
										6 -
										-
										-
										7 -
										-
										8 -
										-
										9 -
										-
Doment									1	0 -
1. No gro 2. Boreh	oundwole wa	ater was enc as terminated	ounter at 1.0	red during the drill 0m due to refusal	ing process.				AGS	

Borehole Log W306 Project Name: St. Joseph Notos SEMH School Project No. Cd164 Co-ords: 415943.00 - 419525.00 Hole Type VS Location: Huddenfield Level: Statum Duscription Statum Duscription Client: Frank Shaw Associates Ltd Dates: 17/11/2022 - 17/11/2022 Logged By MAC Weil Statum Duscription Image: Associates Ltd Dates: 17/11/2022 - 17/11/2022 Logged By MAC Weil Statum Duscription Image: Associates Ltd Dates: 17/11/2022 - 17/11/2022 Logged By MAC Statum Duscription Image: Associates Ltd Image: Associate Type		6								Borehole N	lo.
Construing Stocenting Hole Type Stocenting Hole Type Project Name: St Joseph Norton SEMH School Project No. Chardis: 415943.00 - 419825.00 WS Location: Huddersfield Level: Scale 1:50 Client: Frank Shaw Associates Lid Dates: 17/11/2022 - 17/11/2022 MK Well Samples and In Situ Testing Depth Level: MADE GROUND - Aspinal controls Statum Description 0.00 0.10 0.15 0.15 MADE GROUND - Aspinal controls 0.80 - 1.00 T B Sol (2,1350 for 1.00 1.00 MADE GROUND - Aspinal controls MADE GROUND - Aspinal controls 0.80 - 1.00 T B Sol (2,1350 for 1.00 1.00 Sol (2,1350 for 1.00		S					Bo	reho	ole Log	WS06	5
Project Name: St Joseph Norton SEMH School C/164 Project No. C/164 Co-ords: 415943.00 - 419825.00 Profer YME WS Location: Huddersfield Lovel: 1:60 Scale 1:60 Clent: Frank Shaw Associates Ltd Dates: 17/11/2022 - 17/11/2022 Logged By MK Well Strikes Sample-send in Stu Testing Depth (m) Dates: 17/11/2022 - 17/11/2022 MK View 0.20 TJ 0.01 0.15 0.01 0.15 MMD (MOND) -Append concrete. MADE (MOND) -Mappend c	CON	Suit	ing			Ducie et Nie				Sheet 1 of	:1 -
Location: Huddersfield Scale Scale 1:0 1:0 Clent: Frank Shaw Associates Lid Dates: 17/11/2022 - 17/11/2022 Logged By MrK Well Mater Same Scale Stratum Description MODE GROUND - Sachalt concrete. MADE GROUND - Sachalt concrete. <td< td=""><td>Projec</td><td>t Name:</td><td>St Joseph</td><td>Norto</td><td>n SEMH School</td><td>Project No. C4164</td><td></td><td>Co-ords:</td><td>415943.00 - 419525.00</td><td>WS</td><td>e</td></td<>	Projec	t Name:	St Joseph	Norto	n SEMH School	Project No. C4164		Co-ords:	415943.00 - 419525.00	WS	e
Client: Frank Shaw Associates Lid Dates: 1711/2022 - 17/11/2022 Logged By MK Well Sinkes Dapth (m) Type Results 0.00 1.00 Logged By MK MDE GROUND - Aphilic context. MDE	Locati	on:	Huddersfie	əld				l evel:		Scale	
Clent: Frank Shaw Associates Lid Date: 17/11/2022 - 17/11/2022 Clogged Mr Well Strike Samples and Lesting Depth (m) Type Results 0m) Level (m) Lagend Stratum Description MADE GROUND-Asphal concrete. MADE GROUND-Asp	Loouti									1:50	
Wealty Netter Samples and in Situ reding Depth (m) Level (m) Lagend Stratum Description Image: Strike 0.23 TJ Results 0.63 0.63 0.63 0.63 0.64	Client		Frank Sha	w Ass	ociates Ltd		1	Dates:	17/11/2022 - 17/11/2022	MK	'y
0.20 TJ 0.05 0.05 0.000 100 100 0.070 0.070 T 0.05 0.15 MADE GROUND - Black sandy gravel. Sand is fine to coarse. Grave is fine to coarse, sub-analysis of saphalrocanets. MADE GROUND - Single sandy gravel. Sand is fine to coarse. Sandy gravel. Sand is fine to coarse. Sandy gravel. Sandy gravelation. Sandy gravel. Sandy gravel. Sandy gravel. S	Well	Water Strikes	Samples Depth (m)	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	n	
Remarks	Rema	rks	0.20 0.70 0.80 - 1.00 1.00	TJ	50 (12,13/50 for 125mm)	0.05 0.10 0.15 1.00			MADE GROUND - Asphalt concret MADE GROUND - Black sandy gra- fine to coarse. Gravel is fine to coarse angular of weathered asphalt conc and sandstone. Dense becoming very dense yellow brown clayey gravelly SAND. Sand coarse. Gravel is fine to coarse, su sandstone. End of borehole at 1.00 m	e avel. Sand is rse, sub rete dy gravelly is fine to screte, brick v to orange l is fine to b angular of	2 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -

									Borehole No.	-
n	S	ρ				Bo	reho	ole Log	WS07	
con	sult	ing						0	Sheet 1 of 1	
Projec	t Name:	St Joseph	Norto	n SEMH School	oject No. 4164		Co-ords:	415913.00 - 419613.00	Hole Type WS	
Locati	on:	Huddersfie	eld				Level:		Scale 1:50	
Client	:	Frank Sha	w Ass	ociates Ltd			Dates:	18/11/2022 - 18/11/2022	Logged By MK	
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
ज्याष	Strikes	Depth (m)	Туре	Results	(m)	(m)				
		0.30	TJ		0.12			MADE GROUND - Asphalt concrete MADE GROUND - Black and red sa with occasional cobbles. Sand is fin Gravel and cobbles are fine to coar	andy gravels to coarse.	
		0.70	TJ		0.60			angular of asphalt concrete, brick a	nd ash.	
		1.00		N=5 (1,1/1,2,1,1)				MADE GROUND - Greyish yellowis sandy gravelly clay. Sand is fine to Gravel is fine to coarse, sub angula	n brown coarse. 1 r of	
		1.50 - 1.80	В					Soft yellowish orange brown sandy CLAY. Sand is fine to coarse. Grave	gravelly el is fine to	-
	• • •	2.00		N=7 (1,1/1,2,2,2)	1.80			Soft yellowish orange brown sandy gravelly CLAY. Sand is fine to coars fine to coarse, sub angular of sands	slightly se. Gravel is 2 stone.	_
		2 50	_т							_
	•	2.70 - 3.00	B							
	•	3.00		N=15 (3,3/2,4,4,5)	3.00			F atoria da contra de contra de la consta	3	_
	•							extremely weak yellowish greyish b weathered MUDSTONE.	rown	
										_
	•									
	•	4.00		50 (25 for 105mm/50	4.00			End of borehole at 4.00 m	4	_
				for 215mm)						
										-
									5	-
										-
									6	
									7	_
										-
									8	_
										-
									9	-
										-
Derr	rko								10	
1. No 2. Bor 4. Gas	groundv ehole was and wa	vater was enc as terminated ater monitorin	counter l at 4.0 g well	red during the drilling 00m due to refusal. installed to 3.00m d	g process. epth.				AGS	

									Borehole No.
n	S	p				Bo	reho	ole Log	WS08
con	SUIT	Ing					1		Sheet 1 of 1
Projec	t Name	: St Joseph	Norto	n SEMH School	oject No. 1164		Co-ords:	415903.00 - 419600.00	Hole Type WS
Loooti	<u></u>	Huddorofi		C			Lovoli		Scale
Locali	on.	nuquersite	eiu				Level.		1:50
Client	:	Frank Sha	w Ass	ociates Ltd	1		Dates:	18/11/2022 - 18/11/2022	Logged By MK
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1
	Suikes	Depth (m)	Туре	Results	(11)	(11)		MADE GROUND - Grass overlying	dark brown
		0.30	TJ		0.20			slightly gravelly sandy clayey topso	il. Sand is
		0.60	т.		0.60			angular of brick, aggregate, coal an	d asphalt
		0.00			0.00			Concrete. MADE GROUND - Dark brown san	dy gravelly
		1.00	Т	N=40 /5 0/8 12 12 8				clay. Sand is fine to coarse. Gravel	is fine to 1 -
		1.00		11-40 (5,9/6, 12, 12,6)				coal and rare metal.	
								Sand is fine to coarse. Gravel is fine	ravelly sand. e to coarse,
								sub angular of brick, concrete, aggr ceramics and occasional glass.	egate, metal,
		2.00		N=2 (0,1/0,1,1,0)	2.00			Soft greyish brown sandy gravelly (CLAY. Sand is 2
								fine to coarse. Gravel is fine to coar angular of sandstone.	se, sub
		2 70 2 00						0	
		2.70 - 3.00							
		3.00 3.00	T	N=6 (3,2/2,2,1,1)					3 -
					0.50				
					3.50			Extremely weak yellowish greyish b	rown
		4.00		50 (25 for 85mm/50	4.00				4 -
		4.00		for 105mm)	4.00			End of borehole at 4.00 m	4
									5 -
									6 -
									7 -
									8 -
									9 -
									10 -
Rema	rks								
1. No 2. Bor	groundv ehole w	vater was end as terminated	counte l at 4.0	red during the drillin 00m due to refusal.	g process.				AGS

									Borehole No.
n	S	p				Bo	reho	ole Log	WS09
con	sult	ing						.	Sheet 1 of 1
Projec	t Name:	St Joseph	Norto	n SEMH School	roject No. 4164		Co-ords:	415943.00 - 419603.00	Hole Type WS
Locati	on:	Huddersfie	eld				Level:		Scale 1:50
Client		Frank Sha	w Ass	ociates Ltd			Dates:	18/11/2022 - 18/11/2022	Logged By MK
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1
	Surkes	Depth (m)	Туре	Results	0.15	(11)			dark brown
		0.50 1.00 1.00 1.80 - 2.00 2.00 2.00 3.00	TJ T B T	N=6 (2,2/1,1,2,2) N=20 (2,2/4,4,6,6) N=38 (10,8/9,10,11,8)	0.60 0.90 2.30 3.00			coarse. Gravel is fine to coarse, sul brick and aggregate. MADE GROUND - Grey red beige s gravels. Sand is fine to coarse. Gra coarse, sub angular of brick, sands asphalt concrete and concrete. MADE GROUND - Dark brown grey gravelly clay. Sand is fine to coarse fine to coarse, sub angular of aspha and brick. Soft becoming firm yellowish brown gravelly CLAY. Sand is fine to coarse fine to coarse, angular of sandstone Dense orange yellow gravelly slight SAND. Sand is fine to coarse. Grav coarse, sub angular of sandstone.	 angular of sandy vel is fine to to tone and y sandy Gravel is alt concrete sandy be. Gravel is be. Gravel is concrete sandy concrete sandy concrete sandy alt concrete sandy concrete sandy concrete sandy alt concrete sandy alt concrete sandy alt concrete sandy alt concrete alt concrete
		3.60		50 (25 for 30mm/50 for 40mm)	3.60			End of borehole at 3.60 m	4 5 6 7 8 9 10
Rema 1. No 2. Bor	rks groundw ehole wa	vater was enc as terminated	counter l at 3.6	red during the drillin Om due to refusal.	g process.				

							Borehole No.
				Boi	reho	ble Log	WS10
consultin	g					Ŭ	Sheet 1 of 1
Project Name:	St Joseph Nort	on SEMH School	oject No. 4164		Co-ords:	415961.00 - 419572.00	Hole Type WS
Location:	Huddersfield				l evel:		Scale
					20101.		1:50
Client: F	Frank Shaw As	sociates Ltd	1		Dates:	18/11/2022 - 18/11/2022	Logged By MK
Well Water Strikes	Samples and	d In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1
0.	0.70 T 70 - 1.00 B 1.50 T	N=15 (3,2/3,4,4,4)	0.30			MADE GROUND - Grass overlying slightly gravelly sandy clayey topsoi fine to coarse. Gravel is fine to coar angular of brick and sub rounded of Medium dense yellow orange very of gravelly SAND. Sand is fine to coars fine to coarse, sub angular of sands with occasional pockets of very sandy gra	dark brown il. Sand is se, sub <u>quartzite.</u> clayey se. Gravel is stone. 1 <i>velly clay.</i>
	2.00	N=42 (7,7/8,9,12,13)	2.00			Extremely weak yellowish greyish b weathered MUDSTONE.	rown 2
	3.00	N=50 (7,8/50 for 235mm)	3.00			End of borehole at 3.00 m	3 4 5 6 7 8 8

3. Gas and water monitoring standpipe installed to 3.00m depth.

h	c n							Trialpit N	10
						Tri	al Pit Log	TP01	I
con	sultin	g						Sheet 1 c	of 1
Projec	t St Jo	seph Norto	n SEMH School	Projec	ct No.		Co-ords: 415914.00 - 419602.00	Date	00
Name	·			C4 164	+		Level: 130.50 Dimensions	07/02/20	23
Locati	ion: Hudd	lersfield					(m):	1:25	
Client	: Frank	< Shaw Ass	ociates Ltd				Depth 3.20	Loggeo MK	ł
er Ke	Sam	ples and I	n Situ Testing	Depth	Level	Logong	Stratum Description		
Wat Stri	Depth	Туре	Results	(m)	(m)	Legend			
	0.10	TJ		0.30	130.20		MADE GROUND - Grass overlying dark brown gravelly sand. Sand is fine to coarse. Gravel is coarse sub angular of asphalt, concrete and bri aggregate. Sub rounded of quartzite. MADE GROUND - Brown grey gravelly sand wi cobbles and boulders. Gravel, cobbles and bou sub angular of brick, concrete, asphalt concrete rebar, sandstone, rubber and ceramics.	clayey fine to ck and ith ilders are a, wire,	2 - 3
Rema	urks: 1. 2.	No ground Trial pit wa	dwater was encountere as terminated at 3.20m	d during depth d	the drilli lue to sid	⊥ ing proco les colla	∣ ess. psing and maximum reached with the excavat	tor.	
Stabil	ity: Sie	des unstab	le.						

	C	2							Trialpit N	No
	S						Tri	al Pit Log	TP02	2
CON	Sult	ny							Sheet 1 o	of 1
Projec	ct St	Josep	h Norto	n SEMH School	Projec	t No.		Co-ords: 415911.00 - 419573.00	Date	123
	,. 				0410-	•		Dimensions	Scale	12.5
Locat	ion: Hi	udderst	field					(m):	1:25	
Client	:: Fr	ank Sh	iaw Ass	ociates Ltd			1	Depth 1.20	Logged MK	d
ke fe	S	Sample	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Wat Stri	Dep	oth	Туре	Results	(m)	(m)	Legend			
	0.2	0	ТJ					MADE GROUND - Grass overlying dark brown c gravelly sand. Sand is fine to coarse. Gravel is fil coarse sub angular of asphalt, concrete, brick, ag and subrounded of quartzite.	ayey ne to ggregate	
	0.6	60	ТJ		0.35	132.15		MADE GROUND - Brown grey gravelly cobbly sa Sand is fine to coarse. Gravel and cobbles are fi coarse sub angular of brick, concrete, asphalt, m wire and sandstone.	and. ne to etal,	
					0.70	131.80		Firm orangish yellowish brown sandy gravelly CL	AY with	
								to coarse sub angular of sandstone.	31 is fine	1 -
					1.20	131.30	<u></u>	End of pit at 1.20 m		
										2
										4
Rema Stabil	arks: ity:	1. No 2. Tria Sides	ground al pit wa stable.	water was encounte as terminated at 1.20	red during m depth a	the drilli nd back	ing proc filled wit	ess. h arisings.	AG	I S

h	C	2							Trialpit N	٧o
	S						Tri	al Pit Log	TP0	3
CON	Suit	mg						_	Sheet 1 o	of 1
Projec	ct s	t Josep	h Norto	n SEMH School	Projec	ct No.		Co-ords: 415881.00 - 419537.00	Date	000
- Norrice	· ·				04104	+		Dimensions	Scale	123
Locat	ion: H	udders	field					(m):	1:25	
Client	:: F	rank Sh	naw Ass	ociates Ltd				Depth 3.00	Logged MK	d
iter ike		Sample	es and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Wa Stri	De	pth	Туре	Results	(m)	(m)				
					0.40	134.20 131.90 131.60		MADE GROUND - Grass overlying dark brown of gravelly sand. Sand is fine to coarse. Gravel is focarse sub angular of asphalt, concrete, brick, a and sub rounded of quartzite. MADE GROUND - Brownish grey gravelly cobb Sand is fine to coarse. Gravel and cobbles are coarse, sub angular of brick, concrete, metal, pl and occasional sandstone. Firm yellowish brown gravelly sandy CLAY with Sand is fine to coarse. Gravel is fine to coarse subangular of sandstone. Firm yellowish brown gravelly sandy CLAY with Sand is fine to coarse. Gravel is fine to coarse subangular of sandstone. End of pit at 3.00 m	clayey ine to iggregate ly sand. fine to astic wire	2-
		4				41				5 -
Rema	irks:	1. No 2. Tri	ground al pit wa	water was encountere as terminated at 3.00m	ed during i depth a	the drilli and back	ing proc filled wit	ess. h arisings.		
Stabil	ity:	Sides	collaps	ing from 2.00m depth.					AC	15

	C	2							Trialp	it No
	Sult						Tri	ial Pit Log	TP	04
CON	Suit	my			Ducies	4 NI -		0	Sheet	1 of 1
Projec	st s:	t Josep	h Norto	n SEMH School	C4164	1 NO.		Level: 133.00	07/02/	le 2023
Locati	ion [.] H	uddore	field			-		Dimensions	Sca	ale
		uuueis	lielu					(m):	1:2	<u>25</u>
Client	: F	rank Sh	aw Ass	ociates Ltd				0.30	M	jeu K
er (e		Sample	s and I	n Situ Testing	Depth	Level	Logona	d Stratum Deparintion		
Wat Strij	De	oth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.2	20	TJ		0.30	132.70		topsoil. Sand is fine to coarse. Gravel is fine to subangular of brick, sandstone, asphalt concre- concrete. Frequent rootlets with rootlets. End of pit at 0.30 m	coarse, ete and	2
Rema	rks:	1. No 2 Tri	ground	Iwater was encounter	ed during	the drilli	ng proc	ess.		4
Stabili	ity:	Sides	stable.	as terminated at 0.301				n anongo.		GS

6	C	2							Trialpit	t No
	5						Tri	al Pit Log	TPO)5
CON	sun	ing						-	Sheet 1	l of 1
Projec	ct s	t Josep	h Norto	n SEMH School	Projec	ct No. ₄		Co-ords: 415917.00 - 419524.00	Dat	.e
	,.		<u> </u>		04104	+		Dimensions	07/02/2 Sca	2023 le
Locat	ion: H	udders	field					(m):	1:2	5
Client	:: F	rank Sł	naw Ass	ociates Ltd				Depth 0.20	Logg Mk	⊧ed ∕
50		Sample	s and I	n Situ Testing	Denth					<u> </u>
Nate Strik	De	pth	Туре	Results	(m)	(m)	Legend	I Stratum Description		
We	0.	pth 10	Type	Results	(m) 0.20	(m) 135.45		MADE GROUND - Brown clayey slightly gravel topsoil. Sand is fine to coarse. Gravel is fine to sub angular of brick, sandstone, asphalt concre- fragments and sub rounded quartitle. Frequent End of pit at 0.20 m	ly sandy coarse ite, coal rootlets.	
										5 -
Rema Stabil	arks: ity:	1. No 2. Tri Sides	o ground al pit wa stable.	dwater was encounte as terminated at 0.20	ered during Om depth a	the drilli Ind back	ing proc filled wit	ess. h arisings.	A	u GS

h	C	2							Borehole N	۷o.
	S					Bo	reho	ole Log	RO01	I
CON	Suit	ing							Sheet 1 of	f2
Projec	t Name:	St Joseph	Nortor	n SEMH School	Project No. C4164		Co-ords:	415922.00 - 419559.00	RO	e
Locati	on:	Huddorefi	ald				l ovel:	132.80	Scale	
LUCALI	011.	Huudersiie					Level.	132.00	1:50	
Client:		Frank Sha	w Asso	ociates Ltd		1	Dates:	24/04/2023 - 25/04/2023	Logged B MK	3y
Well	Water Strikes	Samples	s and I	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		Deptil (III)	туре	T Courto	0.30	132.50		MADE GROUND: Grass overlying clayey gravelly sand. Sand is fine to Gravel is fine to coarse, subangula	dark brown o coarse. r of asphalt	
					0.70	132.10		concrete, brick, concrete and aggre MADE GROUND: Brown grey grav	egate/ elly cobbly	1.
		1.20		N=8 (1,1/1,1,2,4)	1.20	131.60		coarse, subangular of brick, concre concrete, metal, wire and sandston Firm yellowish brown grey sandy g Sandy is fine to coarse. Gravel is s sandstone and mudstone. Peninne Lower Coal Measures Stra (MUDSTONE AND SANDSTONE)	te, asphalt e avelly CLAY. ubangular of	1 -
		2.20		N=50 (25 for 140mm/50 for 165mm)						-
		3.20		N=50 (6,9/50 for 255mm)						3 -
		4.20		N=50 (5,12/50 for 270mm)	or					4 -
		5.20		N=50 (7,13/50 for 190mm)						5 -
		6.70		N=50 (25 for 130mm/50 for 140mm)						6 -
		8.20		N=50 (6,15/50 for 130mm)						8 -
Rema	rks	9.70		N=45 (25 for 105mm/45 for 165mm)				Continued on next sheet		- 10 -

Borehole advanced using rotary open hole methodology with water as a flushing medium.
 Borehole terminated at 15.35m begl, target depth achieved.

AGS

									Borehole N	lo.
Π	5	ρ				Bo	reho	ole Loa	RO01	
con	nsult	ing						5	Sheet 2 of	f2
Projec	ct Name:	St Joseph	Norto	n SEMH School	Project No. C4164		Co-ords:	415922.00 - 419559.00	Hole Type	е
Locati	ion:	Huddersfie	eld		01101		Level:	132.80	Scale	
									1:50 Logged B	SV.
Client	:	Frank Sha	w Ass	ociates Ltd			Dates:	24/04/2023 - 25/04/2023	МК	, ,
Well	Water Strikes	Samples Depth (m)	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
Rema 1. Har 2 Bor	rks	12.70 14.20 15.00	rtaken	N=50 (5,8/50 fo 40mm) N=50 (25 for 80mm/50 for 120m N=50 (11,13/50 fo 200mm)	r 15.35	117.45		nedium		
3. Bor	ehole te	rminated at 1	5.35m	begl, target dept	h achieved.	water as a	nuoniny fi	nomum.		5

									Borehole No.
	5	ρ				ole Log	R002		
con	sult	ing					1	•	Sheet 1 of 2
Projec	t Name:	St Joseph	Norto	n SEMH School	oject No. 4164		Co-ords:	415887.00 - 419574.00	Hole Type RO
Locati	on:	Huddersfie	eld				Level:	132.10	Scale
Client:		Frank Sha	w Ass	ociates Ltd			Dates:	25/04/2023 - 26/04/2023	Logged By MK
	Water	Sample	s and	In Situ Testing	Depth	Level	Logond	Stratum Depariation	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	
					0.30 0.50	131.80 131.60		MADE GROUND: Grass overlying clayey gravelly sand. Sand is fine to Gravel is fine to coarse, subangular concrete, brick, concrete and aggre MADE GROUND: Brown grey grave sand. Sand is fine to coarse. Grave coarse, subangular of brick, concret	dark brown) coarse. of asphalt gate.
		1.20		N=50 (4,4/12,13,13,12)	1.20	130.90		concrete, metal, wire and sandstone Stiff becoming very stiff greyish yell gravelly CLAY. Sand is fine to coars fine to coarse, sub angular of sands Peninne Lower Coal Measures Stra (MUDSTONE AND SANDSTONE)	3. ow sandy e. Gravel is stone. ita
		2.20		N=50 (4,10/50 for 260mm)					2 -
		3.20		N=50 (3,10/50 for 220mm)					3 -
	4.20 N=50 (23,2/50 1 155mm)								4 -
		5.20		N=50 (25 for 120mm/50 for 215mm)					5 -
		6.70		N=50 (4,20/50 for 130mm)					7 -
		8.20		N=50 (25 for 110mm/50 for 20mm)					8 -
		9.70		N=50 (6,9/50 for 210mm)				Continued on next sheet	
Remain 1. Har 2. Bor 3. Bor	rks nd excav ehole ac ehole te	vated pit unde dvanced using rminated at 1	ertaken g rotary 5.30m	to 1.20m begl. y open hole method begl, target depth a	ology with	water as a	a flushing r	nedium.	AGS

									Borehole N	No.
n	S	p				ole Log	RO02	2		
con	sult	ing						0	Sheet 2 of	f 2
Projec	t Name:	: St Joseph	Norto	n SEMH School	Project No. C4164		Co-ords:	415887.00 - 419574.00	Hole Type RO	е
Locati	on.	Huddersfi	ald	1			ا میما	132 10	Scale	
Locati	011.						Level.	102.10	1:50	
Client:	:	Frank Sha	w Ass	ociates Ltd	-	I	Dates:	25/04/2023 - 26/04/2023	Logged B MK	sy
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	۱	
		Deptil (III)	Type	Results						-
										-
										-
										-
		11 20		N=50 (25 for						11 -
		11.20		120mm/50 for						-
				rosmin)						-
										12 -
										-
										-
		12.70		N=50 (8,16/50 for						-
				210mm)						13 -
										-
										-
										-
										14 -
		14.20		N=50 (25 for 40mm/50 for 55mm	1)					-
										-
										-
		15.00		N=50 (25 for 105mm/50 for						15 -
				190mm)	15.30	116.80		End of borehole at 15.30 m	 1	-
										-
										-
										-
										-
										-
										17 -
										-
										-
										18 —
										-
										-
										19 -
										-
										20 —
Rema 1. Har	rкs nd excav	/ated pit unde	rtaken	to 1.20m begl.	-l-1- '''		<i></i>			
2. Bor 3. Bor	enole ac ehole te	avanced using rminated at 1	j rotar 5.30m	y open noie metho begl, target depth	achieved.	water as a	i nusning m	neaium.	ACE	5

5	5							Borehole N	lo.
					RO03	1			
consu	ting				_		5	Sheet 1 of	2
Proiect Nam	ne: St Joseph	Nortor	n SEMH School	oject No.		Co-ords:	415916.00 - 419602.00	Hole Type	Э
			C4	164				RO	
Location:	Huddersfie	eld				Level:	130.50	1:50	
Client:	Frank Sha	w Asso	ociates Ltd			Dates:	26/04/2023 - 26/04/2023	Logged By	у
) Mate	Sample	s and	In Situ Testing	Danth	Laval			IVIT	
Well Strike	es Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	١	
				0.35	130.15		MADE GROUND: Grass overlying clayey gravelly sand. Sand is fine to Gravel is fine to coarse, subangular concrete, brick, concrete and aggre MADE GROUND - Brown grey grav with cobbles and boulders. Gravel, boulders are sub angular of brick, c asphalt concrete, wire, rebar, sands and ceramics.	dark brown o coarse. r of asphalt ggate. /relly sand cobbles and ooncrete, stone, rubber	1 2 3 4
	5.00		N=50 (9,14/50 for 205mm)	5.00	125.50		Peninne Lower Coal Measures Stra (MUDSTONE AND SANDSTONE)	ata	5 -
	6.50		N=50 (25 for 120mm/50 for 205mm)						7 -
	8.00		N=50 (25 for 65mm/50 for 70mm)						8 -
	9.50		N=50 (25 for 105mm/50 for 140mm)						

									Borehole N	No.
n	S	p				ole Log	RO03	3		
con	sult	ing						•	Sheet 2 of	f 2
Projec	t Name:	St Joseph	Nortor	n SEMH School	Project No. C4164		Co-ords:	415916.00 - 419602.00	Hole Type RO	е
Locati	on:	Huddersfie	əld				Level:	130.50	Scale	
Client	:	Frank Sha	w Asso	ociates Ltd			Dates:	26/04/2023 - 26/04/2023	1:50 Logged B	By
	14/-+	Sample	s and	In Situ Testina	Dauth	11			IVITY	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptior	1	
										-
										-
										-
		11.00		N=50 (6,17/50 for	r					11 -
				215mm)						-
										-
										-
										12 -
										-
		12.50		N=50 (4,12/50 for 245mm)	r					-
										-
										13 -
										-
										-
		14.00		N=50 (25 for						14 -
				115mm)50 for						-
				2131111						-
		15.00		N=50 (3,8/50 for						15 -
				275mm)						-
					15.43	115.07		End of borehole at 15.42 m		-
										-
										16 -
										-
										17 -
										-
										-
										18 -
										-
										-
										19 -
										-
										-
										20 —
Rema	rks ehole ac	anced using	n rotarv	v open hole metho	odoloav with	water as a	a flushina n	nedium.		
2. Bor 3. No	ehole te SPTs un	rminated at 1	5.42m ween (begl, target depth	achieved. e to loose ar	nd cobbly r	nature of M	lade Ground backfill.	AGS	S

Appendix IV

				KEY FOR UNDERGROUND SE	RVICES	
Station M1	Easting (m) 416014.640	Northing (m) 419373.960	Level (m) 123.405	Surface water Other Gas G1	AS	
M2 M3	415982.643 415961.000	419498.972 419593.140	129.309 131.226	Liectric E Telephone BT Cable TV CA Unidentified U		
M4 M5	415869.272 415900.647	419541.783 419482.971	134.028 137.758	Water Water Water Water Closed Circuit IV CC Communications CC		
M6	415917.457	419394.266	131.349	Heating Pipe HP Empty Duct ED Fibre Optics FO	HP ED FO	
				Vents V Pipe V Traffic Signal TS	 	
': MS?	y Sompling Porch	ala Lagatian		Vapor Recovery VR Offsets F_		
TP?	V Sampling Borene			Where chamber extents are significantly great extents are shown thus;	ster than the cover size, their approximate	
- Trial Pi	t Location			ABBREVIATION KEY	ground	
SK? - Soakav	vay Pit Location			BD base bank prise BD base bank prise BD base base bank prise BD base base base BD base base base BD base base base BD base base base BD base base base base BD base base base base BD base base base base base base base base	unde pipe pipe exit	
RS? - Rotary	Borehole Location			EP electricity pole TP telegraph FH fire hydrant UTF unche b G gully UTL unche b GV gas volve UTS unche b HOR head of run UTT unche b HL high level VP vent plo	pole 5 find 5 lift 5 survey 5 trace	
				IC Inšpection chamber WL wäter en IL invertievel WW water en Mit maniscle WW wash ou PR pipe riser D depth	el ster : valve	
				UTILITY SURVEY NOTES destroyable carbon and posterior and and allocation of the and posterior of the banks, allocation of the anomation contained within the banks however, the result most tester these of substantian	CONDUCTS HING BEEN WEED TO LOCATE AND MAP MANANTO HING BARRY DISERVOUR TO LINKE NO IS ACCUMULE AND ON THE MIREST DULITY. ME NOT MANLINE AND SHOLD THE LOCATION OR	
				DETH OF SERVICEL/TEXTREES BE OF PAYTCLIAR BATCHET THAT THAL EXCANDED IS BAULD BE UNDERTAINED TO COM MAPANTIC HINE UNED ALL RECORD DRIVENING THAT WEEK, ANY INFO MITERIAL) IS NOT GUMANTEED, SERVICE LOCATED FROM I TAKEN FROM RECORDS (FVR), HETOTIC BECORD INFOMNIT TAKEN FROM RECORDS (FVR), HETOTIC BECORD INFOMNIT	NCE TO A FRANCET, THEN IT IS STRONGLY ADVISED HIM SUMMY RESULTS. MILLARE TO US BY THE CLEDIT OR BY THE STRUTTORY RECORD DRAWINGS WILL BE SHOWN AND ANNOTATED AS BECORD DRAWINGS WILL BE SHOWN AND ANNOTATED AS DI IS OFTEN INCOMPLETATANCOUNTER AND COMPLETATIONS	
				RELED UPON. A SHOLD LINE RODOTINO A UTLITY MAY INDIVITE THE PR TO EACH OTHER, WHERE A SINGLE LINE TYPE IS SHOWN W HEDEN SERVICES. WHERE GUITED, DEPTH INFORMATION OF UNDERGOUND SE	SENCE OF NULTRIL SERVICES WITHIN CLOSE PROMITY 2 RECOMMEND HAND DRONN WITHIN C.S., TO EXPOSE SINCER/FEATURES IS STATED. DEPTHS ARE GENERALLY	
				+/~ 105 ACCURATE BUT CANNOT BE QUARANTEED. AND D SENACTIFUTURE, GANNIT SERIES AND DRAWS ARE USUA OTHERMARE STRUED. AT INSPECTION. OR ANY UNDERWINDLING SURVEY CANNO THE COMPLETIORS ANY UNDERWINDLING SURVEY CANNOT REPORTED FOR ANY UNDERWINDLING SURVEY CANNOT REPORT AND A DRAWS AND A DRAWS AND A DRAWS AND A DRAWS REPORT AND A DRAWS AND A DR	IPTHE BIOWN AND UNALLY TO THE TOP OF THE LY TO INSERT (MARE OF DAWLING CAUNCE) UNLESS UED EQUIPHENT TO PERFORM OUR SURVEYS, HOMENER, If DE TOOS GUMANTED AND USE CANNOT SE HED COULD SE REMOVENLY DAYDETED BY A COMPETENT	
				COMMUN.	N SHOULD TWIE ALL REASONNELE NEXABURES TO WORK DANGER FROM UNDERGROUND SERVICES".	
.31 F			/	FL: Floor level CL: Ceiling level	Building line ————————————————————————————————————	
		126.48 +	/	SusCL:Suspended ceiling level	l Ceiling Break Angled Ceiling	
				HHL: Head height level SPR: Spring Point		
127.25 ⁰ 27 +				Sanitary ware	Door / sliding door	
				Heater / radiator	Inspection cover	
				Av Air valve G: O Bg Back gully Gy O BH Borehole Ht. H	Sinth circumference Sv Stop valve Sully TCB Telephone call box Height TTL: Tree top level	
				Boll Bollard IFL I Boll Bollard IFL I BB Bus stop IL I BT British Telecom LL I	Inspection cover IPL Threshold level Internal floor level TCB Telephone call box Invert level TL Traffic light Cleftr box THL Threshold level	
		126.31		Bg Back Gully Lp I CL Cover Level MG T CBX Control box MH T	amp Post Tp Telegraph post Vultigirth Te Traffic signal Vanhole TT Tactile paving	
127.19 +				CPS Concrete paving slab Mkr M CTV Cable TV cover NVP M Elo Electric cover PInv F ED Electricity post Pb F	Aarker post Twl: Top of wall level 4o visible pipes UTL Unable to lift Pipe Invert WL Water level Post box Wm Water meter	
			9	Er Earth rod Re F Fh Fire hydrant Sp S Fe Flagstaff St S	todding eye Wo Wash out Sign post Stop tap	
			81	Road Drop Kerb Verge Tarmac Verge Concrete	Verge Grass Verge Tops Bottoms	
0.021				Ordnance Survey information is pro	ovided for a guide only. OS DETAIL	
		126.24 +				
128.00				-		
			0.99			
52 ⁰						
		126.12 +		REV BY DATE DETAILS		CKD
126.83				STATUS		
/				Frank Sh	naw Associate	es
				Ltd		
		0°82				
			125.88 +	PROJECT		
	126.53 +			Joseph N	Norton SEMH	
				School, I	Deighton Rd,	
				Hudders	field, HD2 1J	P
				TITLE		
				Site Inve	stigation Lav	out
	126.23 + /	0.8%_	125.67 +	Plan	0 ,	
			1			
			1380		S	
32			125.31 +			
,	+					
		Grass		CON	Sulti	ng
				Lawrence House, 6 Mead	owbank Way, Eastwood, Notting	ham, NG16 3SB
			124.85	SCALE	www.its	
125.87	125.60 +	0.02	1	1:1000	SHEET SIZE A1	
/				DATE	DRAWN	CHECKED
						LAB
				PROJECT NO. C.4164	DRAWING NO. 501	REV
		/		04104	501	A

Appendix V

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-45051-1		
Initial Date of Issue:	04-Jan-2023		
Client	HSP Consulting Engineers Limited		
Client Address:	Lawrence House Meadowbank Way Eastwood Nottinghamshire NG16 3SB		
Contact(s):	Matthew Kent		
Project	C4164 Josheph Norton SEMH School		
Quotation No.:		Date Received:	23-Nov-2022
Order No.:		Date Instructed:	23-Nov-2022
No. of Samples:	19		
Turnaround (Wkdays):	10	Results Due:	06-Dec-2022
Date Approved:	04-Jan-2023		
Approved By:			
Sont			

Details:

Stuart Henderson, Technical Manager

Client: HSP Consulting Engineers		Cha	mtost l	h No i	22 45054	22 45054	22 45054	22 45054	22 45051	22 45054	22 45054	22 45054
Limited		Che	miesi Jo		22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051
Quotation No.:	(Chemte	est Sam	ple ID.:	1551116	1551117	1551118	1551119	1551120	1551121	1551123	1551124
		Sa	ample Lo	ocation:	WS01	WS02	WS02	WS03	WS03	WS04	WS05	WS07
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.1	0.2	1.0	0.15	1.8	0.2	0.7	0.3
			Date Sa	ampled:	17-Nov-2022	17-Nov-2022	17-Nov-2022	17-Nov-2022	17-Nov-2022	17-Nov-2022	17-Nov-2022	18-Nov-2022
			Asbest	os Lab:	NEW-ASB	NEW-ASB		NEW-ASB		NEW-ASB		NEW-ASB
Determinand	Accred.	SOP	Units	LOD								
АСМ Туре	U	2192		N/A	-	-		-		-		-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
Moisture	Ν	2030	%	0.020	13	13	16	16	14	17	9.8	17
Chromatogram (TPH)	Ν			N/A	See Attached	See Attached		See Attached		See Attached	See Attached	See Attached
рН	М	2010		4.0	8.5	9.3	5.8	8.7	7.7	8.4	5.7	9.3
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	< 0.40	0.51		0.81		< 0.40	< 0.40	< 0.40
Magnesium (Water Soluble)	N	2120	g/l	0.010			< 0.010		< 0.010		< 0.010	
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.12	0.011	0.054	< 0.010	0.015	0.017	0.076
Total Sulphur	М	2175	%	0.010	0.12	0.074	0.030	0.13	< 0.010	0.098	0.012	0.26
Chloride (Water Soluble)	М	2220	g/l	0.010			0.075		< 0.010		< 0.010	
Nitrate (Water Soluble)	N	2220	g/l	0.010			< 0.010		< 0.010		< 0.010	
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50						4.3		
Sulphate (Total)	U	2430	%	0.010			0.035		0.019		0.027	
Sulphate (Total)	U	2430	mg/kg	100	1600	2200		2400		1000	270	2100
Arsenic	М	2455	mg/kg	0.5	12	8.6		10		6.7	1.9	33
Cadmium	М	2455	mg/kg	0.10	0.32	0.48		0.85		0.26	0.96	0.13
Chromium	М	2455	mg/kg	0.5	29	14		37		18	15	19
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0		2.6		< 2.0	< 2.0	< 2.0
Copper	М	2455	mg/kg	0.50	36	22		40		25	12	42
Mercury	М	2455	mg/kg	0.05	0.10	< 0.05		0.09		0.07	< 0.05	< 0.05
Nickel	М	2455	mg/kg	0.50	20	18		22		14	16	25
Lead	М	2455	mg/kg	0.50	62	19		110		57	63	8.1
Selenium	М	2455	mg/kg	0.25	0.67	0.43		0.64		0.49	0.43	0.67
Vanadium	U	2455	mg/kg	0.5	24	16		25		17	15	33
Zinc	М	2455	mg/kg	0.50	78	69		100		61	110	17
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	< 0.50	< 0.50
LOI	М	2610	%	0.10	4.9	3.0		4.5		4.4	0.66	4.6
Organic Matter	М	2625	%	0.40	5.3			3.6		4.3		29
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0

Client: HSP Consulting Engineers Limited	Chemtest Job No.:			22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	
Quotation No.:	Chemtest Sample ID.:			1551116	1551117	1551118	1551119	1551120	1551121	1551123	1551124	
		Sa	ample Lo	ocation:	WS01	WS02	WS02	WS03	WS03	WS04	WS05	WS07
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):		0.1	0.2	1.0	0.15	1.8	0.2	0.7	0.3		
	Date Sampled:		17-Nov-2022	18-Nov-2022								
	Asbestos Lab:		NEW-ASB	NEW-ASB		NEW-ASB		NEW-ASB		NEW-ASB		
Determinand	Accred.	SOP	Units	LOD								
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0		< 5.0		< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	Ν	2680	mg/kg	1.0	89	< 1.0		19		< 1.0	85	< 1.0
Aromatic TPH >C21-C35	Ν	2680	mg/kg	1.0	660	< 1.0		20		< 1.0	50	< 1.0
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	750	< 5.0		38		< 5.0	130	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	750	< 10		38		< 10	130	< 10
Benzene	М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Toluene	М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0
Naphthalene	М	2800	mg/kg	0.10	1.0	< 0.10		210		0.89	< 0.10	0.21
Acenaphthylene	Ν	2800	mg/kg	0.10	0.53	< 0.10		0.91		0.40	< 0.10	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	2.7	< 0.10		28		2.4	< 0.10	< 0.10
Fluorene	М	2800	mg/kg	0.10	2.3	< 0.10		22		3.2	< 0.10	0.12
Phenanthrene	М	2800	mg/kg	0.10	22	0.18		140		38	0.12	1.1
Anthracene	М	2800	mg/kg	0.10	7.3	< 0.10		29		7.2	< 0.10	0.28
Fluoranthene	М	2800	mg/kg	0.10	40	0.27		190		45	0.12	1.3
Pyrene	М	2800	mg/kg	0.10	34	0.22		160		36	0.13	0.97
Benzo[a]anthracene	М	2800	mg/kg	0.10	19	< 0.10		95		19	< 0.10	0.53
Chrysene	М	2800	mg/kg	0.10	18	< 0.10		91		18	< 0.10	0.47
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	25	< 0.10		100		22	< 0.10	0.49
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	8.7	< 0.10		44		8.5	< 0.10	0.17
Benzo[a]pyrene	М	2800	mg/kg	0.10	24	< 0.10		98		20	< 0.10	0.37
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	14	< 0.10		62		12	< 0.10	0.29
Dibenz(a,h)Anthracene	Ν	2800	mg/kg	0.10	2.2	< 0.10		13		2.4	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	12	< 0.10		53		10	< 0.10	0.25
Total Of 16 PAH's	Ν	2800	mg/kg	2.0	230	< 2.0		1300		250	< 2.0	6.6
Total Phenols	М	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10	< 0.10

Client: HSP Consulting Engineers	Chemtest Job No.:			22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	
Limited	Chamtast Sample ID			4554405	4554400	4554400	4554400	4554400	4554404	4554400	4554400	
Quotation No.:	Chemtest Sample ID.:		1551125	1551126	1551128	1551129	1551130	1551131	1551132	1551133		
		58		cation:	WS07	WS07	WS08	WS08	WS08	WS09	WS09	WS09
			Sampi	e Type:	SOIL							
			Top Dep	om (m).	0.7	2.5	0.6	1.0	3.0	0.1	0.5	1.0
			Date Sa	ampieu.	18-INOV-2022	18-INOV-2022	18-INOV-2022	18-INOV-2022	18-INOV-2022	18-NOV-2022	18-INOV-2022	18-INOV-2022
Determinend	Acorod	SOD	Aspest				NEW-ASB	NEW-ASB		NEW-ASB	NEW-ASB	
		2192	Units	N/A				-		-	-	
		2102					No Asbestos	No Asbestos		No Asbestos	No Asbestos	
Asbestos Identification	U	2192		N/A			Detected	Detected		Detected	Detected	
Moisture	N	2030	%	0.020	13	15	12	14	19	13		16
Chromatogram (TPH)	N			N/A	See Attached		See Attached			See Attached		
рН	М	2010		4.0	7.1	6.6	9.4	9.7	8.3	8.2		7.8
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	< 0.40		2.1			< 0.40		
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010		< 0.010	< 0.010			< 0.010
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	0.058	1.6	1.7	0.053	< 0.010		< 0.010
Total Sulphur	М	2175	%	0.010	0.020	0.042	0.36	0.47	0.049	0.088		0.042
Chloride (Water Soluble)	М	2220	g/l	0.010	< 0.010	0.023		< 0.010	< 0.010			< 0.010
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	0.012		< 0.010	< 0.010			< 0.010
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50		< 0.50			< 0.50		
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50								
Sulphate (Total)	U	2430	%	0.010	0.027	0.077		1.1	0.053			0.029
Sulphate (Total)	U	2430	mg/kg	100	270		9700			1100		
Arsenic	М	2455	mg/kg	0.5	3.5		5.9			10		
Cadmium	М	2455	mg/kg	0.10	0.74		0.23			0.35		
Chromium	М	2455	mg/kg	0.5	22		14			20		
Antimony	N	2455	mg/kg	2.0	< 2.0		< 2.0			< 2.0		
Copper	М	2455	mg/kg	0.50	19		13			25		
Mercury	М	2455	mg/kg	0.05	< 0.05		< 0.05			0.05		
Nickel	М	2455	mg/kg	0.50	36		12			15		
Lead	М	2455	mg/kg	0.50	28		22			49		
Selenium	М	2455	mg/kg	0.25	0.69		0.50			0.51		
Vanadium	U	2455	mg/kg	0.5	15		16			20		
Zinc	М	2455	mg/kg	0.50	120		390			68		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		< 0.50			< 0.50		
LOI	М	2610	%	0.10	5.3		3.7			5.5		
Organic Matter	М	2625	%	0.40						2.6		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		

Client: HSP Consulting Engineers Limited	Chemtest Job No.:		22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051	22-45051		
Quotation No.:	(Chemte	est Sam	ple ID.:	1551125	1551126	1551128	1551129	1551130	1551131	1551132	1551133
		Sa	ample Lo	ocation:	WS07	WS07	WS08	WS08	WS08	WS09	WS09	WS09
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):		0.7	2.5	0.6	1.0	3.0	0.1	0.5	1.0		
	Date Sampled:		18-Nov-2022									
	Asbestos Lab:				NEW-ASB	NEW-ASB		NEW-ASB	NEW-ASB			
Determinand	Accred.	SOP	Units	LOD								
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		< 5.0			< 5.0		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C21-C35	Ν	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		< 1.0			< 1.0		
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0		< 5.0			< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10		< 10			< 10		
Benzene	М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0		
Toluene	М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0		
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0		
o-Xylene	М	2760	µg/kg	1.0	< 1.0		< 1.0			< 1.0		
Naphthalene	М	2800	mg/kg	0.10	< 0.10		0.44			0.41		
Acenaphthylene	Ν	2800	mg/kg	0.10	< 0.10		< 0.10			0.20		
Acenaphthene	М	2800	mg/kg	0.10	< 0.10		0.13			1.2		
Fluorene	М	2800	mg/kg	0.10	< 0.10		< 0.10			1.2		
Phenanthrene	М	2800	mg/kg	0.10	0.22		0.90			12		
Anthracene	М	2800	mg/kg	0.10	< 0.10		0.21			3.1		
Fluoranthene	М	2800	mg/kg	0.10	0.21		1.5			15		
Pyrene	М	2800	mg/kg	0.10	0.20		1.9			13		
Benzo[a]anthracene	М	2800	mg/kg	0.10	0.19		1.3			7.4		
Chrysene	М	2800	mg/kg	0.10	0.22		1.5			7.5		
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	< 0.10		2.0			9.5		
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	< 0.10		0.63			3.6		
Benzo[a]pyrene	М	2800	mg/kg	0.10	< 0.10		1.3			8.7		
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	< 0.10		1.1			5.3		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10		0.33			1.0		
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	0.16		0.99			4.7		
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0		14			94		
Total Phenols	М	2920	mg/kg	0.10	< 0.10		< 0.10			< 0.10		

Client: HSP Consulting Engineers Limited		22-45051						
Quotation No.:	tation No.: Chemtest Sample ID							
		WS10						
		Sample Type:						
			Тор Dep	oth (m):	0.15			
			Date Sa	ampled:	18-Nov-2022			
			Asbest	os Lab:	NEW-ASB			
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-			
Asbestos Identification	U	2192		N/A	No Asbestos Detected			
Moisture	Ν	2030	%	0.020	23			
Chromatogram (TPH)	Ν			N/A	See Attached			
рН	М	2010		4.0	6.9			
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.59			
Magnesium (Water Soluble)	N	2120	g/l	0.010				
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010			
Total Sulphur	М	2175	%	0.010	0.12			
Chloride (Water Soluble)	М	2220	g/l	0.010				
Nitrate (Water Soluble)	Ν	2220	g/l	0.010				
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50			
Sulphide (Easily Liberatable)	Ν	2325	mg/kg	0.50				
Sulphate (Total)	U	2430	%	0.010				
Sulphate (Total)	U	2430	mg/kg	100	1400			
Arsenic	М	2455	mg/kg	0.5	26			
Cadmium	М	2455	mg/kg	0.10	0.84			
Chromium	М	2455	mg/kg	0.5	29			
Antimony	Ν	2455	mg/kg	2.0	9.3			
Copper	М	2455	mg/kg	0.50	150			
Mercury	М	2455	mg/kg	0.05	0.27			
Nickel	М	2455	mg/kg	0.50	59			
Lead	М	2455	mg/kg	0.50	380			
Selenium	М	2455	mg/kg	0.25	2.0			
Vanadium	U	2455	mg/kg	0.5	63			
Zinc	М	2455	mg/kg	0.50	670			
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50			
LOI	М	2610	%	0.10	11			
Organic Matter	М	2625	%	0.40	9.3			
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0			
Aliphatic TPH >C35-C44	I N	2680	ma/ka	1.0	< 1.0			

Client: HSP Consulting Engineers Limited		22-45051					
Quotation No.:	(ple ID.:	1551134				
		Sample Location:					
		SOIL					
		Top Depth (m):					
		Date Sampled:					
		NEW-ASB					
Determinand	Accred.	SOP	Units	LOD			
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0		
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10		
Benzene	М	2760	µg/kg	1.0	< 1.0		
Toluene	М	2760	µg/kg	1.0	< 1.0		
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0		
o-Xylene	М	2760	µg/kg	1.0	< 1.0		
Naphthalene	М	2800	mg/kg	0.10	0.28		
Acenaphthylene	N	2800	mg/kg	0.10	0.17		
Acenaphthene	М	2800	mg/kg	0.10	0.52		
Fluorene	М	2800	mg/kg	0.10	0.46		
Phenanthrene	М	2800	mg/kg	0.10	4.1		
Anthracene	M	2800	mg/kg	0.10	1.2		
Fluoranthene	М	2800	mg/kg	0.10	7.9		
Pyrene	М	2800	mg/kg	0.10	6.9		
Benzo[a]anthracene	М	2800	mg/kg	0.10	3.9		
Chrysene	М	2800	mg/kg	0.10	4.2		
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	5.2		
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	2.0		
Benzo[a]pyrene	M	2800	mg/kg	0.10	4.5		
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	3.0		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	0.50		
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	2.7		
Total Of 16 PAH's	N	2800	mg/kg	2.0	48		
Total Phenols	М	2920	mg/kg	0.10	< 0.10		

Project:	C4164 Joshe	ph Norton	SEMH School
----------	-------------	-----------	-------------

Chemtest Job No:	22-45051				Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1551122					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS04					hazardous	Hazardous
Top Depth(m):	0.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	17-Nov-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	3.0	3	5	6
Loss On Ignition	2610	М	%	3.8			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	410	500		
Total (Of 17) PAH's	2700	N	mg/kg	14	100		
рН	2010	М		10.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching te		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0004	0.0043	0.5	2	25
Barium	1455	U	0.011	0.11	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	0.0065	0.065	0.5	10	70
Copper	1455	U	0.0027	0.028	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.0016	0.016	0.5	10	30
Nickel	1455	U	0.0005	0.0052	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	0.0009	0.0088	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.025	4	50	200
Chloride	1220	U	1.5	15	800	15000	25000
Fluoride	1220	U	0.26	2.6	10	150	500
Sulphate	1220	U	47	470	1000	20000	50000
Total Dissolved Solids	1020	N	110	1100	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	7.2	72	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Chemtest Job No:	22-45051				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1551127					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	WS08					hazardous	Hazardous
Top Depth(m):	0.3				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	18-Nov-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	1.5	3	5	6
Loss On Ignition	2610	М	%	5.4			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg	300	100		
рН	2010	М		8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.025		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching te		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	0.0039	0.039	0.5	2	25
Barium	1455	U	0.014	0.14	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	0.0014	0.014	0.5	10	70
Copper	1455	U	0.0034	0.034	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.0022	0.022	0.5	10	30
Nickel	1455	U	0.0011	0.011	0.4	10	40
Lead	1455	U	0.0031	0.031	0.5	10	50
Antimony	1455	U	0.0007	0.0071	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	U	0.004	0.041	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.56	5.6	10	150	500
Sulphate	1220	U	4.4	44	1000	20000	50000
Total Dissolved Solids	1020	N	85	840	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	10	100	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Matthew Kent HSP Consulting Lawrence House Meadowbank Way Eastwood Nottingham NG16 3SB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: matthew.kent@hspconsulting.com

Analytical Report Number : 23-17127

Project / Site name:	Former Dighton Centre	Samples received on:	10/02/2023
Your job number:	C4164	Samples instructed on/ Analysis started on:	10/02/2023
Your order number:		Analysis completed by:	21/02/2023
Report Issue Number:	1	Report issued on:	22/02/2023
Samples Analysed:	6 soil samples		

Signed:

Dominika Warjan Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Benzo(a)anthracene

Chrysene

Lab Sample Number			2582343	2582344	2582345	2582346	2582347	
Sample Reference				TP01	TP01	TP02	TP02	TP04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.50	0.20	0.60	0.20
Date Sampled				07/02/2023	07/02/2023	07/02/2023	07/02/2023	07/02/2023
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	54	43	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	10	8.7	9.4	9.5	11
Total mass of sample received	kg	0.001	NONE	0.6	0.6	0.6	0.6	0.6
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Amosite- Loose Fibres	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected	-	-
Asbestos Analyst ID	N/A	N/A	N/A	IZJ	IZJ	IZJ	N/A	N/A
General Inorganics	.							
pH - Automated	pH Units	N/A	MCERTS	8.9	11.4	11.5	10.6	9.8
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	73	740	200	980	320
Equivalent)	g/l	0.00125	MCERTS	0.037	0.37	0.1	0.49	0.16
Equivalent)	mg/l	1.25	MCERTS	36.7	369	101	492	162
Sulphide	mg/kg	1	MCERTS	32	78	27	150	85
Total Sulphur	mg/kg	50	MCERTS	670	4700	1700	2800	1200
Organic Matter (automated)	%	0.1	MCERTS	3.3	-	2.3	-	4.1
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	1.9	0.28	0.74	0.63	3.3
Acenaphthylene	mg/kg	0.05	MCERTS	0.35	0.1	0.41	0.19	0.65
Acenaphthene	mg/kg	0.05	MCERTS	4.5	0.63	0.75	0.72	1.9
Fluorene	mg/kg	0.05	MCERTS	3.5	0.29	0.85	0.59	2.3
Phenanthrene	mg/kg	0.05	MCERTS	24	3.2	5.8	5.5	15
Anthracene	mg/kg	0.05	MCERTS	6.4	0.9	1.7	1.5	4.4
Fluoranthene	mg/kg	0.05	MCERTS	32	9.4	9.5	8.9	20
Pyrene	mg/kg	0.05	MCERTS	28	8.8	8.6	8	19

Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	17	5.3	6.2	5.7	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	4.4	1.3	1.4	1.1	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	13	4	4.9	4.3	12
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	5.5	1.8	2.2	2	4.9
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	1.3	0.44	0.53	0.46	1.4
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	5.8*	1.8*	2.3*	2*	6
Total PAH								

16

10

4.8

3.3

0.05

0.05

mg/kg

mg/kg

MCERTS

MCERTS

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	173*	46.3*	54.7*	49.9*	112

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

5

3.4

11

10

5.4

3.7

Lab Sample Number				2582343	2582344	2582345	2582346	2582347
Sample Reference				TP01	TP01	TP02	TP02	TP04
Sample Number				None Supplied				
Depth (m)				0.10	0.50	0.20	0.60	0.20
Date Sampled				07/02/2023	07/02/2023	07/02/2023	07/02/2023	07/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	7.2	11	7.7	16
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.6	0.6	2.1	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	19	26	23	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	36	20	34	28	39
Lead (aqua regia extractable)	mg/kg	1	MCERTS	53	24	41	30	74
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	15	19	17	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	31	22	30	26	36
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	87	82	84	75	89
Monoaromatics & Oxygenates	ua/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	ua/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethylhenzene	ua/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
n & m-yylene	ua/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
o-vylene	ua/ka	5	NONE	< 5.0*	< 5.0*	< 5.0*	< 5.0*	< 5.0*
MTBE (Methyl Tertiany Butyl Ether)	µg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
	10, 0			< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 $_{HS_{1D}AL}$	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 $_{EH_{CU_{1D}AL}}$	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.1	< 1.0
$\frac{1}{2} PH-CWG - Aliphatic > EC12 - EC16_{EH_{CU_{1D}AL}}$	mg/kg	2	MCERTS	2.7	< 2.0	3.4	6	5.3
$\frac{1}{2} PH-CWG - Aliphatic > EC16 - EC21_{EH_{CU_{1D}AL}}$	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	14	20
$\frac{1}{2} PH-CWG - Aliphatic > EC21 - EC35_{EH_{CU_{1D}AL}}$	mg/kg	8 10	NONE	33	< 8.0	39	87	150
IPR-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	шу/ку	10	NONE	41	< 10	50	110	170
	ma == /1 ===	0.001	NONE				0.005	
TPH-CWG - Aromatic >EC5 - EC7 $_{HS_1D_{AR}}$	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 $H_{S_1D_AR}$	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 $_{HS_{1D}AR}$	mg/kg	10.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 $_{\text{EH}_{CU_{1D}_{AR}}}$	mg/kg	1	MCEDITO	1.5	< 1.0	4.2	3.4	5
TPH-CWG - Aromatic >EC12 - EC16 $_{EH_{CU_{1D_{AR}}}}$	mg/kg	10	MCEDIC	16	< 2.0	19	8.9	25
TPH-CWG - Aromatic >EC16 - EC21 $_{\text{EH}_{\text{CU}_{1D}_{AR}}}$	mg/kg	10	MCEDIC	89	16	/2	34	150
TPH-CWG - Aromatic >EC21 - EC35 $_{EH_{CU_{1D_{AR}}}}$	mg/kg	10	NONE	1/0	44	150	100	360
IPT-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	тту/ку	10	NONE	270	60	240	150	540

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

*Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and therefore may be unreliable.

Lab Sample Number	2582348			
Sample Reference				TP05
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled	07/02/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	9.8
Total mass of sample received	kg	0.001	NONE	0.6

Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-
Asbestos in Soil	Туре	N/A	ISO 17025	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	9.2
Total Cyanide	mg/kg	1	MCERTS	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	300
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.15
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	148
Sulphide	mg/kg	1	MCERTS	70
Total Sulphur	mg/kg	50	MCERTS	860
Organic Matter (automated)	%	0.1	MCERTS	2.7

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	1.5
Acenaphthylene	mg/kg	0.05	MCERTS	0.35
Acenaphthene	mg/kg	0.05	MCERTS	1.6
Fluorene	mg/kg	0.05	MCERTS	1.2
Phenanthrene	mg/kg	0.05	MCERTS	11
Anthracene	mg/kg	0.05	MCERTS	3.5
Fluoranthene	mg/kg	0.05	MCERTS	22
Pyrene	mg/kg	0.05	MCERTS	20
Benzo(a)anthracene	mg/kg	0.05	MCERTS	11
Chrysene	mg/kg	0.05	MCERTS	10
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	12
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	6
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	1.2
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	6.4

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	109

Lab Sample Number	2582348			
Sample Reference	TP05			
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled				07/02/2023
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Heavy Metals / Metalloids				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	30
Copper (aqua regia extractable)	mg/kg	1	MCERTS	30
Lead (aqua regia extractable)	mg/kg	1	MCERTS	59
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	31
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	89

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0
p & m-xylene	µg/kg	5	MCERTS	< 5.0
o-xylene	µg/kg	5	NONE	< 5.0*
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	3.4
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	38
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	48

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	2.1
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	13
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	82
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	160
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	260

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

*Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and therefore may be unreliable.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
2582343	TP01	None Supplied	0.1	Brown clay and loam with gravel and vegetation.	
2582344	TP01	None Supplied	0.5	Brown sand with stones and vegetation.	
2582345	TP02	None Supplied	0.2	Brown sandy loam with stones and vegetation.	
2582346	TP02	None Supplied	0.6	Brown sand with gravel.	
2582347	TP04	None Supplied	0.2	Brown clay and loam with gravel and vegetation.	
2582348	TP05	None Supplied	0.1	Brown clay and loam with gravel and vegetation.	

Iss No 23-17127-1 Former Dighton Centre C4164.XLSM Page 6 of 9

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status MCERTS	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D		
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water In-hou extract followed by ICP-OES.		L038-PL	D	MCERTS	
ee cyanide in soil Determination of free cyanide by distillation followed by and colorimetry.		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS	
Speciated EPA-16 PAHs in soil	ciated EPA-16 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Sulphide in soil	Iphide in soil Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.		L010-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	

Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil [®] , silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Iss No 23-17127-1 Former Dighton Centre C4164.XLSM Page 8 of 9

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation Test Name 1		Test Ref	Test Deviation
TP01	None Supplied	S	2582343	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP01	None Supplied	S	2582343	b	TPHCWG (Soil)	L088/76-PL	b
TP01	None Supplied	S	2582344	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP01	None Supplied	S	2582344	b	TPHCWG (Soil)	L088/76-PL	b
TP02	None Supplied	S	2582345	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP02	None Supplied	S	2582345	b	TPHCWG (Soil)	L088/76-PL	b
TP02	None Supplied	S	2582346	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP02	None Supplied	S	2582346	b	TPHCWG (Soil)	L088/76-PL	b
TP04	None Supplied	S	2582347	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP04	None Supplied	S	2582347	b	TPHCWG (Soil)	L088/76-PL	b
TP05	None Supplied	S	2582348	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP05	None Supplied	S	2582348	b	TPHCWG (Soil)	L088/76-PL	b

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Iss No 23-17127-1 Former Dighton Centre C4164.XLSM Page 9 of 9

P:\C4164 - Joseph Norton SEMH School\6.0 Geoenvironmental\Reports\Phase II\Testing & Analysis\HSP PAH profiling v1.3 FULL BLANK Rev A

Appendix VI

LABORATORY REPORT

4043

Contract Number: PSL22/7591

Report Date: 15 December 2022

Client's Reference: C4164

Client Name: HSP Consulting Lawrence House 4 Meadowbank Way Eastwood Nottingham NG16 3SB

For the attention of: Matthew Kent

Contract Title: Joseph Norton SEMH School

Date Received:	28/11/2022
Date Commenced:	28/11/2022

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager) S Royle (Laboratory Manager)

M Fennell (Senior Technician)

L Knight (Assistant Laboratory Manager) S Eyre (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS03		SB	1.00	1.30	Brown very gravelly sandy CLAY.
WS05		SB	0.80	1.00	Brown slightly gravelly sandy CLAY.
WS07		SB	1.50	1.80	Brown very gravelly very sandy CLAY.
WS07		SB	2.70	3.00	Brown slightly gravelly sandy silty CLAY.
WS08		SB	2.70	3.00	Brown gravelly sandy silty CLAY.
WS09		SB	1.80	2.00	Brown gravelly sandy silty CLAY.
WS10		SB	0.70	1.00	Brown gravelly sandy silty CLAY.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS03		SB	1.00	1.30	17			45	22	23	74	Intermediate Plasticity CI
WS05		SB	0.80	1.00	16			38	21	17	97	Intermediate Plasticity CI
WS07		SB	1.50	1.80	16			36	19	17	71	Intermediate Plasticity CI
WS07		SB	2.70	3.00	18			37	21	16	98	Intermediate Plasticity CI
WS08		SB	2.70	3.00	22			38	22	16	87	Intermediate Plasticity CI
WS09		SB	1.80	2.00	17			37	19	18	89	Intermediate Plasticity CI
WS10		SB	0.70	1.00	26			38	21	17	88	Intermediate Plasticity CI

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

Appendix VII

TRL DCP Test Results

Project Number:	C4164	Project Name:	St Joseph Norton
Test Location:	TRL02 Next to BH03	Date:	15/02/2023
Start Depth (mmbgl)	0	Test Completed By	NC

Determination of Equivalent CBR using TRL Dynamic Cone Penetrometer DCP CBR Relationship based on Kleyn & Van Heerden (60° Cone) - TRL, CS 229

TRL equation: $Log_{10} = 2.48 - 1.057 \times Log10 \text{ (mm/blow)}$

Layer No	Layer De	epth (m)	Penetration rate	Equivalent CBR (%)	
	Start Finish		(mm/blow)		
1	0.03	0.27	14.11	18	
2	0.27	0.43	9.41	28	
3	0.43	1.00	15.40	17	
4					
5					

TRL DCP Test Results

Project Number:	C4164	Project Name:	St Joseph Norton	
Test Location:	TRL03 Next to BH07	Date:	15/02/2023	
Start Depth (mmbgl)	0	Test Completed By	NC	

Determination of Equivalent CBR using TRL Dynamic Cone Penetrometer DCP CBR Relationship based on Kleyn & Van Heerden (60° Cone) - TRL, CS 229

TRL equation: $Log_{10} = 2.48 - 1.057 \times Log10 \text{ (mm/blow)}$

Layer No	Layer Depth (m)		Penetration rate	Equivalent CBR (%)
	Start	Finish	(mm/blow)	
1	0.03	0.10	23.33	11
2	0.10	0.60	14.70	18
3	0.60	0.75	15.00	17
4				
5				

TRL DCP Test Results

			-
Project Number:	C4164	Project Name:	St Joseph Norton
Test Location:	TRL04 Next to BH10	Date:	15/02/2023
Start Depth (mmbgl)	0	Test Completed By	NC

Determination of Equivalent CBR using TRL Dynamic Cone Penetrometer DCP CBR Relationship based on Kleyn & Van Heerden (60° Cone) - TRL, CS 229

TRL equation: $Log_{10} = 2.48 - 1.057 \times Log10 \text{ (mm/blow)}$

Layer No	Layer Depth (m)		Penetration rate	Equivalent CBR (%)
	Start	Finish	(mm/blow)	
1	0.03	0.29	33.33	7
2	0.29	1.00	15.90	16
3				
4				
5				

Appendix VIII

Page 1 of 3

Trialpit No.: SK1

0.80

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.40	MADE GROUND - Scrub overlying dark brown sandy slightly gravelly clayey topsoil.
0.40	1.20	MADE GROUND - Light reddish brown sandy very gravelly clay with cobble content.
1.20	2.30	CLAY - Soft yellowish brown slightly sandy very gravelly clay.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 2.30 Water level from 2.23 to 2.30m. No Groundwater was encountered **Gives the Figures**

0.07

2.49

80.0

m

 m^2

m³

Time

(minutes)

Depth

2.23

(m)

0

Soakaway Test Run 1

S=

a_{p50}=

V_{p75-25}=

Test Date: 07/02/2023

Page 2 of 3

Trialpit No.: SK1

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.40	MADE GROUND - Scrub overlying dark brown sandy slightly gravelly clayey topsoil.
0.40	1.20	MADE GROUND - Light reddish brown sandy very gravelly clay with cobble content.
1.20	2.30	CLAY - Soft yellowish brown slightly sandy very gravelly clay.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 2.30 Water level from 2.20 to 2.30m. No Groundwater was encountered **Gives the Figures**

Soakaway Test Run 2

Test Date: 07/02/2023

 $f_{run1} = 1.77 \times 10^{-4} m/s$

Time

(minutes)

Depth

2.20

2.27

2.28

2.30

(m)

0

2

4

6

Test and analysis carried out in general accordance with BRE Digest 365 : 2016

Job No.:C4164Site:St Joseph Norton School, HuddersfieldClient:Frank Shaw Associates Ltd

Page 3 of 3

Trialpit No.: SK1

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.40	MADE GROUND - Scrub overlying dark brown sandy slightly gravelly clayey topsoil.
0.40	1.20	MADE GROUND - Light reddish brown sandy very gravelly clay with cobble content.
1.20	2.30	CLAY - Soft yellowish brown slightly sandy very gravelly clay.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 2.30 Water level from 2.06 to 2.30m. No Groundwater was encountered **Gives the Figures**

	-	
S=	0.24	m
a _{p50} =	3.10	m²
V _{p75-25} =	0.27	m³

Time

(minutes)

Depth

2.06

2.23

2.26

2.28

2.30

(m)

0

2

4

6

8

Soakaway Test Run 3

Test Date: 08/02/2023

Job No.:C4164Site:St Joseph Norton School, HuddersfieldClient:Frank Shaw Associates Ltd

m/s

Page 1 of 2

Trialpit No.: SK2

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.05	MADE GROUND - Asphalt concrete.
0.05	0.40	MADE GROUND - Black slightly clayey sandy gravel.
0.40	1.55	CLAY - Firm yellowish brown slightly sandy gravelly clay with cobble content.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42(measured in laboratory) S= Storage depth (m) 1.55 Water level from 0.55 to 1.55m. No Groundwater was encountered

Gives the Figures

S=	1.00	m
a _{p50} =	4.10	m²
V _{p75-25} =	0.70	m ³

Soakaway Test Run 1

Test Date: 07/02/2023

Time Depth (minutes) (m) 0 0.55 2 0.57 4 0.59 6 0.62 8 0.63 10 0.64 20 0.67 40 0.80 1212 1.55

 $f_{run1} = 1.52 \times 10^{-6}$ m/s

Test and analysis carried out in general accordance with BRE Digest 365 : 2016

Job No.: C4164 Site: St Joseph Norton School, Huddersfield Frank Shaw Associates Ltd Client:

Page 2 of 2

Trialpit No.: SK2

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.05	MADE GROUND - Asphalt concrete.
0.05	0.40	MADE GROUND - Black slightly clayey sandy gravel.
0.40	1.55	CLAY - Firm yellowish brown slightly sandy gravelly clay with cobble content.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.55 Water level from 0.55 to 1.55m. No Groundwater was encountered **Gives the Figures**

1.00

4.10

m

 m^2

$V_{p75-25} = 0.70 \text{ m}^3$

S=

a_{p50}=

Soakaway Test Run 2

Test Date: 08/02/2023

(minutes) (m) 0 0.53 2 0.54 4 0.55 6 0.55 8 0.56 10 0.57 20 0.61 60 0.70 90 0.80 120 1.17 180 1.31

Depth

 $f_{run1} = 1.41 \times 10^{-5} m/s$

Time

Test and analysis carried out in general accordance with BRE Digest 365 : 2016

Job No.:C4164Site:St Joseph Norton School, HuddersfieldClient:Frank Shaw Associates Ltd

Page 1 of 3

Trialpit No.: SK3 Soil Profile: Depth (m) Description From: To: 0.02 MADE GROUND - Asphalt concrete. 0.00 MADE GROUND - Yellowish sandy slightly clayey gravel. 0.02 0.30 0.30 1.30 Soft yellowish brown sandy very gravelly CLAY. Sketch plan of test zone Not to scale 0.80 All dimensions in metres. porosity (N) = 0.42(measured in laboratory) S= Storage depth (m) 1.30 S Water level from 0.675 to 1.30m. No Groundwater was encountered Gives the Figures S= 0.63 m 1.40 m² 2.50 a_{p50}= ${\rm m}^{\rm 3}$ 0.35 V_{p75-25}= Time Depth (minutes) (m) Soakaway Test Run 1 Test Date: 07/02/2023 0 0.675 2 0.75 4 0.84 Time (minutes) Infiltration Data 2 3 4 6 7 8 9 10 6 0.92 5 0.65 8 0.98 t₇₅ t₂₅ 10 1.21 0.75 75% Depth (metres) 0.85 Full 0.95 1.05 25% 1.15 Full 1.25 From the above graph, (min) t_{p25}= 3.75 $t_{p75=}$ 9.5 (min) Soil Infiltration Rate: f = Vp75-25 x N $f_{run1} = 1.71 \times 10^{-4}$ m/s = 1.71E-04 a_{p50} x t_{p75-25} Test and analysis carried out in general accordance with BRE Digest 365 : 2016 Job No.: C4164 Site: St Joseph Norton School, Huddersfield Frank Shaw Associates Ltd Client: consul
INSITU SOAKAWAY TEST RESULTS

Page 2 of 3

Trialpit No.: SK3 Soil Profile: Depth (m) Description From: To: 0.02 0.00 MADE GROUND - Asphalt concrete. 0.02 0.30 MADE GROUND - Yellowish sandy slightly clayey gravel. 0.30 1.30 Soft yellowish brown sandy very gravelly CLAY. Sketch plan of test zone 0.80 Not to scale All dimensions in metres. porosity (N) = 0.42(measured in laboratory) S= Storage depth (m) 1.30 S Water level from 0.65 to 1.30m. No Groundwater was encountered Gives the Figures S= 0.65 m 1.40 m² 2.55 a_{p50}= ${\rm m}^{\rm 3}$ 0.36 V_{p75-25}= Time Depth (minutes) (m) Soakaway Test Run 2 Test Date: 08/02/2023 0 0.65 2 0.72 4 0.75 Time (minutes) Infiltration Data 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 6 0.80 0 0.65 8 0.90 t₂₅ t₇₅ 10 0.99 0.75 1.26 20 75% Depth (metres) Full 0.85 0.95 1.05 25% 1.15 Full 1.25 From the above graph, (min) t_{p25}= 6.3 $t_{p75=}$ 15.5 (min) Soil Infiltration Rate: t = Vp75-25 x N f _{run1}= 1.09 x 10⁻⁴ m/s = 1.09E-04 a_{p50} x t_{p75-25} Test and analysis carried out in general accordance with BRE Digest 365 : 2016 Job No.: C4164 Site: St Joseph Norton School, Huddersfield Frank Shaw Associates Ltd Client: consul

INSITU SOAKAWAY TEST RESULTS

Page 3 of 3

Trialpit No.: SK3

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.02	MADE GROUND - Asphalt concrete.
0.02	0.30	MADE GROUND - Yellowish sandy slightly clayey gravel.
0.30	1.30	Soft yellowish brown sandy very gravelly CLAY.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.30 Water level from 0.65 to 1.30m. No Groundwater was encountered **Gives the Figures**

S= 0.65

Soakaway Test Run 3

3=	0.05	m
a _{p50} =	2.55	m²
V _{p75-25} =	0.36	m ³

Test Date: 08/02/2023

Time Depth (minutes) (m) 0 0.65 2 0.70 4 0.75 6 0.81 8 0.84 10 0.90 20 1.30

 $f_{run1} = 9.99 \times 10^{-5}$ m/s

Test and analysis carried out in general accordance with BRE Digest 365 : 2016

Job No.:C4164Site:St Joseph Norton School, HuddersfieldClient:Frank Shaw Associates Ltd

Appendix IX

Project Number Project Name

Project Number (Project Name) Client	C4164 Ioseph N Frank Sh	lorton Sl aw Asso	EMH ciates						WS01	
				Det	ection I	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	0.3	<0.1	<0.1	17.1	0.7	<1	<1		3.05	2.05
00:15	0.3	<0.1	<0.1	18.7	0.5	<1	<1			
00:30	0.3	<0.1	<0.1	19.0	0.4	<1	<1			
00:45	0.3	<0.1	<0.1	19.0	0.4	<1	<1			
01:00	0.3	<0.1	<0.1	19.0	0.4	<1	<1			
01:15	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
01:30	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
01:45	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
02:00	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
02:15	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
02:30	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
02:45	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
03:00	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
03:15	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
03:30	0.3	<0.1	< 0.1	19.1	0.4	<1	<1			
03:45	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
04:00	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
04:15	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
04:30	0.3	<0.1	<0.1	19.1	0.4	<1	<1			
04:45	0.3	<0.1	<0.1	19.1	0.4	<1	<1	├───╂		
00.00	0.3	<0.1	<0.1	19.1	0.4	<1 <1	1	######	2 05	2.05
Peak	0.3	0.0	0.0	19.1	0.4	0.0	0.0	0.0	3.05	2.05
Date	Engine	Not	es:		Baromotric Prossuro mbar				10)28
01/12/2022			Pressure Trend			d	Ste	ady		
	Equipment GFM436				Air Temp (°C)				6	

Project Number Project Name Client

C4164

Project Name Client	Joseph N Frank Sh	Norton Sl aw Asso						W	WS03		
				Det	ection l	imit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
lime	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl	
00:00	0.3	< 0.1	<0.1	19.3	0.7	<1	<1		2.05	1.43	
00:15	0.3	<0.1	<0.1	16.6	0.7	<1	<1				
00:30	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
00:45	0.3	<0.1	<0.1	15.7	0.7	<1	<1				
01:00	0.3	<0.1	<0.1	15.7	0.7	<1	<1				
01:15	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
01:30	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
01:45	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
02:00	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
02:15	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
02:30	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
02:45	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
03:00	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
03:15	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
03:30	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
03:45	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
04:00	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
04:15	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
04:30	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
04:45	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
05:00	0.3	<0.1	<0.1	15.6	0.7	<1	<1				
Steady	0.3	<0.1	<0.1	15.6	0.7	<1	<1	#####	2.05	1.43	
Peak	0.3	0.0	0.0	19.3	0.7	0.0	0.0	0.0	2.05	1.43	
Date 01/12/2022	Engine	Note Engineer I			Barometric Pressure, mbar				1028		
. ,						Pressure Trend			Ste	ady	
	Equipment GFM430 Air Temp (°C))	6						

Gas Monitoring Certificate

C4164

Project Number Project Name Client

Jo

				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	18.1	2.5	<1	<1		4.05	4.00
00:15	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
00:30	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
00:45	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
01:00	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
01:15	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
01:30	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
01:45	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
02:00	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
02:15	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
02:30	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
02:45	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
03:00	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
03:15	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
03:30	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
03:45	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
04:00	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
04:15	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
04:30	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
04:45	<0.1	<0.1	<0.1	19.7	0.7	<1	<1			
05:00	<0.1	<0.1	<0.1	19.6	0.7	<1	<1			
Steady	<0.1	<0.1	<0.1	19.6	0.7	<1	<1	#####	4.05	4.00
Peak	0.0	0.0	0.0	19.7	2.5	0.0	0.0	0.0	4.05	4.00
Date 01/12/2022	Enginee	Not	es: NC		Barometric Pressure, mbar				. 1028	
	Faultan ant				Pressure Trend				Ste	ady
	Equipm	ent	GFM43	30		Air Te	emp (°C)		6

Gas Monitoring Certificate

Project Number Project Name Client

Joseph Norton SEMH Frank Shaw Associates

				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.1	<0.1	<0.1	19.6	0.1	<1	<1		3.05	2.70
00:15	0.1	<0.1	<0.1	18.2	2.5	<1	<1			
00:30	0.1	<0.1	<0.1	17.5	2.6	<1	<1			
00:45	0.1	<0.1	<0.1	17.4	2.5	<1	<1			
01:00	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
01:15	0.1	<0.1	<0.1	17.3	2.6	<1	<1			
01:30	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
01:45	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
02:00	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
02:15	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
02:30	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
02:45	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
03:00	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
03:15	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
03:30	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
03:45	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
04:00	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
04:15	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
04:30	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
04:45	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
05:00	0.1	<0.1	<0.1	17.3	2.7	<1	<1			
Steady	0.1	<0.1	<0.1	17.3	2.7	<1	<1	#####	3.05	2.70
Peak	0.1	0.1 0.0		19.6	2.7	0.0	0.0	0.0	3.05	2.70
Date 01/12/2022	Engine	Note ngineer		tes: NC		Barometric Pressure, mbar)28
					Pressure Trend				Ste	ady
	Equipm	ient	GFM430			Air Te	emp (°C)	6	

Project Number Project Name

Project Number Project Name Client	C4164 Joseph N Frank Sh	Norton Sl naw Asso	EMH ciates						WS01	
				Det	ection l	Limit				
_		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	0.3	<0.1	<0.1	16.6	0.7	<1	<1		3.05	2.05
00:15	0.3	<0.1	<0.1	18.5	0.7	<1	<1			
00:30	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
00:45	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
01:00	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
01:15	0.3	<0.1	<0.1	19.0	0.8	<1	<1			
01:30	0.3	<0.1	<0.1	19.0	0.8	<1	<1			
01:45	0.3	<0.1	<0.1	19.0	0.8	<1	<1			
02:00	0.3	< 0.1	< 0.1	19.0	0.7	<1	<1			
02:15	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
02:30	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
02:45	0.3	<0.1	<0.1	19.0	0.7	<1	<1		-	
03:00	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
03:15	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
03:30	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
03:45	0.3	<0.1	<0.1	10.0	0.7	<1	<1			
04.00	0.3	<0.1	<0.1	10.0	0.7	<1 <1	<1 <1	┟──┟		
04.13	0.5	<0.1	<0.1 <0.1	10.0	0.7	~1	~1		+	
04.30	0.3	<0.1	<0.1	10.0	0.7	~1	1			
05.00	0.3	<0.1	<0.1	19.0	0.7	<1	<1			
Steady	0.3	<0.1	<0.1	19.0	0.7	<1	<1	#####	3.05	2.05
Peak	0.3	0.0	0.0	19.0	0.8	0.0	0.0	0.0	3.05	2.05
Date 09/12/2022	Engine	Notes: ngineer NC			Barometric Pressure, mbar				10)08
					Pressure Trend				Steady	
	Equipn	nent	GFM43	36	Air Temp (°C)				-2	

Project Number Project Name Client

Project Number Project Name Client	C4164 Joseph N Frank Sh	lorton Sl aw Asso	EMH ciates						WS03		
				Det	ection L	imit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg	
00:00	0.1	<0.1	<0.1	18.0	0.8	<1	<1		2.05	1.48	
00:15	<0.1	<0.1	<0.1	16.8	0.7	<1	<1				
00:30	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
00:45	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
01:00	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
01:15	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
01:30	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
01:45	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
02:00	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
02:15	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
02:30	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
02:45	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
03:00	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
03:15	<0.1	< 0.1	<0.1	16.1	0.7	<1	<1			1	
03:30	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
03:45	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
04:00	<0.1	<0.1	<0.1	16.1	0.7	<1	<1				
04:15	<0.1	< 0.1	<0.1	16.1	0.7	<1	<1				
04:30	<0.1	< 0.1	<0.1	16.1	0.7	<1	<1				
04:45	<0.1	< 0.1	<0.1	16.1	0.7	<1	<1				
05:00	< 0.1	<0.1	<0.1	16.1	0.7	<1	<1				
Steady	<0.1	<0.1	<0.1	16.1	0.7	<1	<1	#####	2.05	1.48	
Peak	0.1	0.0	0.0	18.0	0.8	0.0	0.0	0.0	2.05	1.48	
Date 09/12/2022	Engine	Note Engineer M		otes: NC		Barometric Pressure, mbar				08	
					Pressure Trend				Steady		
	Equipment GFM430					Air Te	emp (°C)		-2		

Gas Monitoring Certificate

C4164

Project Number Project Name Client

				Dot	oction I	imit			L		
		<0.1	<0.1	<0 1			<i>_</i> 1	<0.1			
	<u> </u>										
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbg	Depth of Groundwater (mb	
00:00	0.1	<0.1	<0.1	17.4	2.8	<1	<1		4.05	4.00	
00:15	0.1	<0.1	<0.1	17.9	0.8	<1	<1				
00:30	0.1	<0.1	<0.1	17.9	0.8	<1	<1				
00:45	0.1	<0.1	<0.1	17.9	0.8	<1	<1				
01:00	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
01:15	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
01:30	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
01:45	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
02:00	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
02:15	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
02:30	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
02:45	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
03:00	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
03:15	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
03:30	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
03:45	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
04:00	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
04:15	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
04:30	0.3	< 0.1	<0.1	17.9	0.8	<1	<1				
04:45	0.3	< 0.1	< 0.1	17.9	0.8	<1	<1				
05:00	0.3	<0.1	<0.1	17.9	0.8	<1	<1				
Steady	0.3	<0.1	<0.1	17.9	0.8	<1	<1	#####	4.05	4.00	
Peak	0.3	0.0	0.0	17.9	2.8	0.0	0.0	0.0	4.05	4.00	
Date 09/12/2022	Enginee	Not	es: NC		Baro	Barometric Pressure, mbar				008	
					Pressure Trend			d	Ste	eady	
	Equipm	Equipment GFM430				Air Temp (°C)				-2	

Gas Monitoring Certificate

C4164

Project Number Project Name Client

				Det	ection l	imit			P	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	18.9	0.2	<1	<1		3.05	2.82
00:15	<0.1	<0.1	<0.1	17.3	2.9	<1	<1			
00:30	<0.1	<0.1	<0.1	16.7	3.0	<1	<1			
00:45	<0.1	<0.1	<0.1	16.6	3.1	<1	<1			
01:00	<0.1	<0.1	<0.1	16.6	3.1	<1	<1			
01:15	<0.1	<0.1	<0.1	16.6	3.1	<1	<1			
01:30	<0.1	<0.1	<0.1	16.6	3.1	<1	<1			
01:45	<0.1	<0.1	<0.1	16.5	3.1	<1	<1			
02:00	<0.1	<0.1	<0.1	16.5	3.1	<1	<1			
02:15	<0.1	<0.1	<0.1	16.5	3.1	<1	<1			
02:30	<0.1	<0.1	<0.1	16.5	3.1	<1	<1			
02:45	<0.1	<0.1	<0.1	16.5	3.1	<1	<1			
03:00	<0.1	<0.1	<0.1	16.6	3.1	<1	<1			
03:15	<0.1	<0.1	<0.1	16.6	3.1	<1	<1			
03:30	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
03:45	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
04:00	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
04:15	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
04:30	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
04:45	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
05:00	<0.1	<0.1	<0.1	16.6	3.0	<1	<1			
Steady	<0.1	<0.1	<0.1	16.6	3.0	<1	<1	#####	3.05	2.82
Peak	0.0	0.0	0.0	18.9	3.1	0.0	0.0	0.0	3.05	2.82
Date 09/12/2022	Enginee	Not er	es: NC		Barometric Pressure, mbar				10)08
	Fauinment G		mont CEN420		Air Tomp (°C)			a	Ste	ady
	Equipm	ent	GFIVI4:	50		AIT IE	emp (C)	-	·Z

Project Number Project Name Client

Project Number Project Name Client	C4164 Joseph N Frank Sh	lorton S aw Asso	EMH ociates						WS01		
				Det	ection l	imit					
_		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl	
00:00	0.1	<0.1	<0.1	17.1	0.6	<1	<1		3.05	2.10	
00:15	0.3	<0.1	<0.1	19.6	0.7	<1	<1				
00:30	0.5	<0.1	<0.1	19.6	0.8	<1	<1				
00:45	<0.1	<0.1 <0.1 <0.1 19.7 0.8 <1 <1 (0.1 (0.1 10.6 0.8 (1 (1									
01:00	<0.1	0.1 <0.1 <0.1 19.6 0.8 <1 <1									
01:15	0.9	<0.1	<0.1	19.6	0.8	<1	<1				
01:30	0.1	<0.1	<0.1	19.6	0.8	<1	<1				
01:45	0.1	<0.1	<0.1	19.6	0.8	<1	<1				
02:00	0.5	<0.1	<0.1	19.6	0.8	<1	<1				
02:15	<0.1	<0.1	<0.1	19.6	0.8	<1	<1				
02:30	0.3	<0.1	<0.1	19.6	0.8	<1	<1				
02:45	0.5	<0.1	<0.1	19.6	0.8	<1	<1				
03:00	0.9	<0.1	<0.1	19.6	0.8	<1	<1				
03:15	<0.1	<0.1	<0.1	19.6	0.8	<1	<1				
03:30	0.3	<0.1	<0.1	19.6	0.8	<1	<1				
03:45	0.5	<0.1	<0.1	19.6	0.8	<1	<1				
04:00	0.9	<0.1	<0.1	19.6	0.8	<1	<1				
04:15	<0.1	<0.1	<0.1	19.6	0.8	<1	<1				
04:30	0.3	<0.1	<0.1	19.6	0.8	<1	<1				
04:45	0.1	<0.1	<0.1	19.6	0.8	<1	<1				
05:00	0.5	<0.1	<0.1	19.6	0.8	<1	<1		ļ		
Steady	0.5	<0.1	<0.1	19.6	0.8	<1	<1	#####	3.05	2.10	
Peak	0.9	0.0	0.0	19.7	0.8	0.0	0.0	3.05	2.10		
Date 20/12/2022	Engine	Not er	tes: NC		Barometric Pressure, mbar				10)03	
			Pressure Trend				Steady				
	Equipm	nent	GFM43	36-	Air Temp (°C)				8		

C4164

Project Number Project Name Client

Project Name Client	Joseph N Frank Sh	lorton S aw Asso		WS03							
				Det	ection I	imit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl	
00:00	<0.1	<0.1 <0.1 <0.1 19.5 0.6 <1 <1								1.25	
00:15	<0.1	<0.1	<0.1	14.6	0.6	<1	<1				
00:30	<0.1	<0.1	<0.1	14.3	0.6	<1	<1				
00:45	<0.1	<0.1	<0.1	14.2	0.6	<1	<1				
01:00	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
01:15	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
01:30	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
01:45	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
02:00	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
02:15	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
02:30	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
02:45	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
03:00	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
03:15	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
03:30	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
03:45	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
04:00	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
04:15	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
04:30	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
04:45	<0.1	<0.1	< 0.1	14.1	0.6	<1	<1				
05:00	<0.1	<0.1	<0.1	14.1	0.6	<1	<1				
Steady	<0.1	<0.1	<0.1	14.1	0.6	<1	<1	#####	2.05	1.25	
Peak	0.0	0.0	0.0	19.5	0.6	0.0	0.0	0.0	2.05	1.25	
Date 20/12/2022	Engine	Not	es: NC		Barometric Pressure, mbar				10	003	
	_				Pressure Trend				Ste	ady	
	Equipm	Equipment GFM430				Air Temp (°C)				8	

Gas Monitoring Certificate

C4164

Project Number Project Name Client

Clicht			clates						<u> </u>	
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	18.1	2.7	<1	<1		4.05	4.00
00:15	<0.1	<0.1	<0.1	19.6	0.8	<1	<1			
00:30	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
00:45	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
01:00	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
01:15	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
01:30	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
01:45	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
02:00	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
02:15	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
02:30	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
02:45	<0.1	< 0.1	<0.1	19.8	0.6	<1	<1			
03:00	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
03:15	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
03:30	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
03:45	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
04:00	<0.1	< 0.1	<0.1	19.8	0.6	<1	<1			
04:15	<0.1	< 0.1	<0.1	19.8	0.6	<1	<1			
04:30	<0.1	< 0.1	<0.1	19.8	0.6	<1	<1			
04:45	<0.1	< 0.1	< 0.1	19.8	0.6	<1	<1			
05:00	<0.1	<0.1	<0.1	19.8	0.6	<1	<1			
Steady	<0.1	<0.1	<0.1	19.8	0.6	<1	<1	#####	4.05	4.00
Peak	0.0	0.0	0.0	19.8	2.7	0.0	0.0	0.0	4.05	4.00
Date 20/12/2022	Engine	Not er	es: NC		Baro	metric I	Pressure	e, mbar	10	003
	En investor CENT		0.51.5.5		Pressure Trend			d	Ste	ady
	Equipm	nent	GFM43	30		Air Te	emp (°C)			8

C4164

Project Number Project Name Cliont

Project Number Project Name Client	C4164 Joseph N Frank Sh	lorton S aw Asso	EMH ciates						W	510
				Det	ection l	imit			<u>k</u>	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.1	<0.1	<0.1	17.7	2.2	<1	<1		3.05	2.80
00:15	0.3	<0.1	<0.1	17.2	2.8	<1	<1			
00:30	0.6	<0.1	<0.1	16.9	2.9	<1	<1			
00:45	0.6	<0.1	<0.1	16.9	2.9	<1	<1			
01:00	0.6	<0.1	<0.1	16.8	2.8	<1	<1			
01:15	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
01:30	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
01:45	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
02:00	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
02:15	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
02:30	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
02:45	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
03:00	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
03:15	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
03:30	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
03:45	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
04:00	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
04:15	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
04:30	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
04:45	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
05:00	0.6	<0.1	<0.1	16.8	2.9	<1	<1			
Steady	0.6	<0.1	<0.1	16.8	2.9	<1	<1	#####	3.05	2.80
Peak	0.6	0.0	0.0	17.7	2.9	0.0	0.0	0.0	3.05	2.80
Date 20/12/2022	Engine	Not er	es: NC		Baro	metric I	Pressure	e, mbar	10)03
	Equipm	nent	GFM43	30		Air Te	emp (°C)	a)	Ste	ady 8

Project Number Project Name Client

Project Number Project Name Client	C4164 Joseph N Frank Sh	lorton Sl aw Asso	EMH ciates						WS	501
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	<0.1	<0.1	<0.1	15.5	0.6	<1	<1		3.05	1.95
00:15	<0.1	<0.1	<0.1	18.0	0.2	<1	<1			
00:30	-0.1	<0.1	<0.1	18.6	0.2	<1	<1			
00:45	-0.1	<0.1	<0.1	18.6	0.2	<1	<1			
01:00	<0.1	<0.1	<0.1	18.6	0.2	<1	<1			
01:15	-0.1	<0.1	<0.1	18.7	0.2	<1	<1			
01:30	-0.3	<0.1	<0.1	18.7	0.2	<1	<1			
01:45	-0.1	<0.1	<0.1	18.7	0.2	<1	<1			
02:00	-0.3	<0.1	<0.1	18.7	0.2	<1	<1			
02:15	-0.1	<0.1	<0.1	18.7	0.2	<1	<1			
02:30	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
02:45	-0.1	<0.1	<0.1	18.7	0.2	<1	<1			
03:00	-0.3	<0.1	<0.1	18.7	0.2	<1	<1			
03:15	-0.1	<0.1	<0.1	18.7	0.2	<1	<1			
03:30	0.1	<0.1	<0.1	18.7	0.2	<1	<1			
03:45	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
04:00	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
04:15	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
04:30	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
04:45	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
05:00	<0.1	<0.1	<0.1	18.7	0.2	<1	<1			
Steady	<0.1	<0.1	<0.1	18.7	0.2	<1	<1	#####	3.05	1.95
Peak	0.1	0.0	0.0	18.7	0.6	0.0	0.0	0.0	3.05	1.95
Date 06/01/2023	Engine	Notes: Barometric Pressure, mba gineer NC Barometric Pressure, mba					e, mbar	10)10	
						Pressu	re Tren	d	Falling	
	Equipm	nent	GFM43	36		Air Te	emp (°C)			8

C4164

Project Number Project Name Client

Project Number Project Name Client	C4164 Joseph N Frank Sh	orton SI aw Asso	EMH ciates						WS	503
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	-0.5	<0.1	<0.1	19.5	0.6	<1	<1		2.05	1.15
00:15	-0.7	<0.1	<0.1	14.0	0.6	<1	<1			
00:30	-0.5	<0.1	<0.1	12.6	0.6	<1	<1			
00:45	-0.5	<0.1	<0.1	12.6	0.6	<1	<1			
01:00	-0.7	<0.1	<0.1	12.5	0.6	<1	<1			
01:15	-0.5	<0.1	<0.1	12.4	0.6	<1	<1			
01:30	-0.5	<0.1	<0.1	12.4	0.6	<1	<1			
01:45	-0.3	<0.1	<0.1	12.3	0.6	<1	<1			
02:00	-0.3	<0.1	<0.1	12.4	0.6	<1	<1			
02:15	-0.5	<0.1	<0.1	12.3	0.6	<1	<1			
02:30	-0.5	<0.1	<0.1	12.3	0.6	<1	<1			
02:45	-0.3	<0.1	<0.1	12.3	0.6	<1	<1			
03:00	-0.5	<0.1	<0.1	12.3	0.6	<1	<1			
03:15	-0.7	<0.1	<0.1	12.3	0.6	<1	<1			
03:30	-0.3	<0.1	<0.1	12.3	0.6	<1	<1			
03:45	-0.1	<0.1	<0.1	12.3	0.6	<1	<1			
04:00	-0.5	<0.1	<0.1	12.3	0.6	<1	<1			
04:15	-0.3	<0.1	<0.1	12.3	0.6	<1	<1			
04:30	-0.1	<0.1	<0.1	12.3	0.6	<1	<1			
04:45	-0.1	<0.1	<0.1	12.3	0.6	<1	<1			
05:00	-0.3	<0.1	< 0.1	12.3	0.6	<1	<1			
Steady	-0.3	<0.1	<0.1	12.3	0.6	<1	<1	#####	2.05	1.15
Peak	-0.1	0.0	0.0	19.5	0.6	0.0	0.0	0.0	2.05	1.15
Date 06/01/2023	Enginee	Not	es: NC		Baro	metric I	Pressure	e, mbar	1010	
						Pressu	ire Tren	d	Falling	
	Equipm	ent	GFM43	30		Air Te	emp (°C)			8

Gas Monitoring Certificate

C4164

Project Number Project Name Client

Cheffe		aw A330	clates							
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	-0.5	<0.1	<0.1	18.0	2.3	<1	<1		4.05	3.98
00:15	-0.5	<0.1	<0.1	19.4	0.6	<1	<1			
00:30	-0.3	<0.1	<0.1	19.8	0.6	<1	<1			
00:45	-0.3	<0.1	<0.1	19.9	0.6	<1	<1			
01:00	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
01:15	-0.1	<0.1	<0.1	19.9	0.6	<1	<1			
01:30	-0.1	<0.1	<0.1	19.9	0.6	<1	<1			
01:45	-0.3	<0.1	<0.1	19.9	0.6	<1	<1			
02:00	-0.5	<0.1	<0.1	19.9	0.6	<1	<1			
02:15	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
02:30	-0.1	<0.1	<0.1	19.9	0.6	<1	<1			
02:45	-2.1	<0.1	<0.1	19.9	0.6	<1	<1			
03:00	-0.3	<0.1	<0.1	19.9	0.6	<1	<1			
03:15	-0.5	<0.1	<0.1	19.9	0.6	<1	<1			
03:30	-0.7	<0.1	<0.1	19.9	0.6	<1	<1			
03:45	-0.7	<0.1	<0.1	19.9	0.6	<1	<1			
04:00	-0.5	<0.1	<0.1	19.9	0.6	<1	<1			
04:15	-0.3	<0.1	<0.1	19.9	0.6	<1	<1			
04:30	-0.1	<0.1	<0.1	19.9	0.6	<1	<1			
04:45	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
05:00	-0.1	< 0.1	<0.1	19.9	0.6	<1	<1			
Steady	-0.1	<0.1	<0.1	19.9	0.6	<1	<1	#####	4.05	3.98
Peak	-0.1	0.0	0.0	19.9	2.3	0.0	0.0	0.0	4.05	3.98
Date 06/01/2023	Enginee	Not	es: NC		Baro	metric I	Pressure	e, mbar	10)10
	Equipment CEM420		20	Pressure Trend			a	Fal	iing	
	Equipm	ient	GFIVI43	50		Air le	emp (C			8

Gas Monitoring Certificate

C4164

Project Number Project Name Client

Joseph Norton SEMH

Frank Shaw Associates

				Det	ection l	imit			L	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	19.2	0.3	<1	<1		3.05	2.30
00:15	<0.1	<0.1	<0.1	17.9	2.3	<1	<1			
00:30	<0.1	<0.1	<0.1	17.4	2.4	<1	<1			
00:45	<0.1	<0.1	<0.1	17.3	2.4	<1	<1			
01:00	<0.1	<0.1	<0.1	17.3	2.4	<1	<1			
01:15	<0.1	<0.1	<0.1	17.3	2.4	<1	<1			
01:30	-0.1	<0.1	<0.1	17.3	2.4	<1	<1			
01:45	-0.3	<0.1	<0.1	17.3	2.4	<1	<1			
02:00	-0.5	<0.1	<0.1	17.3	2.4	<1	<1			
02:15	-0.3	<0.1	<0.1	17.3	2.4	<1	<1			
02:30	-0.5	<0.1	<0.1	17.3	2.4	<1	<1			
02:45	-0.5	<0.1	<0.1	17.3	2.4	<1	<1			
03:00	-0.3	<0.1	<0.1	17.3	2.4	<1	<1			
03:15	<0.1	<0.1	<0.1	17.3	2.4	<1	<1			
03:30	-0.1	<0.1	<0.1	17.3	2.4	<1	<1			
03:45	-0.3	<0.1	<0.1	17.3	2.4	<1	<1			
04:00	<0.1	<0.1	<0.1	17.3	2.4	<1	<1			
04:15	-0.1	<0.1	<0.1	17.3	2.4	<1	<1			
04:30	-0.3	<0.1	<0.1	17.3	2.4	<1	<1			
04:45	-0.1	<0.1	<0.1	17.3	2.4	<1	<1			
05:00	-0.3	<0.1	<0.1	17.3	2.4	<1	<1			
Steady	-0.3	<0.1	<0.1	17.3	2.4	<1	<1	#####	3.05	2.30
Peak	-0.1	0.0	0.0	19.2	2.4	0.0	0.0	0.0	3.05	2.30
Date 06/01/2023	Enginee	Not er	es: NC		Baro	metric l	Pressure	e, mbar	10)10
						Pressu	ire Tren	d	Fal	ling
	Equipm	ent	GFM43	30		Air Te	emp (°C)		8

Project Number Project Name

Project Number Project Name Client	C4164 Joseph N Frank Sh	lorton S aw Asso	EMH ciates						WS	501
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	<0.1	<0.1	<0.1	16.0	0.7	<1	<1		3.05	2.02
00:15	<0.1	<0.1	<0.1	17.9	0.6	<1	<1			
00:30	<0.1	<0.1	<0.1	18.5	0.4	<1	<1			
00:45	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
01:00	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
01:15	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
01:30	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
01:45	<0.1	<0.1	<0.1	18.7	0.4	<1	<1			
02:00	<0.1	<0.1	<0.1	18.7	0.4	<1	<1			
02:15	<0.1	<0.1	<0.1	18.7	0.4	<1	<1			
02:30	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
02:45	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
03:00	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
03:15	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
03:30	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
03:45	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
04:00	<0.1	<0.1	<0.1	18.6	0.4	<1	<1	│	┨───┤	ļ
04:15	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
04:30	<0.1	<0.1	<0.1	18.6	0.4	<1	<1		 	
04:45	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
05:00	<0.1	<0.1	<0.1	18.6	0.4	<1	<1			
Steady	<0.1	< 0.1	< 0.1	18.6	0.4	<1	<1	#####	3.05	2.02
Реак	0.0	0.0	0.0	18.7	0.7	0.0	0.0	0.0	3.05	2.02
Date 19/01/2023	Engine	Notes: ngineer NC Barometric Pressure, mbar					e, mbar	10)06	
			ļ			Pressu	ire Tren	d	Ste	ady
	Equipm	nent	GFM43	30		Air Te	emp (°C)			3

C4164

Project Number Project Name Client

Project Name Client	Joseph N Frank Sh	lorton Sl aw Asso	EMH ciates						W	503
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	19.4	0.6	<1	<1		2.05	1.30
00:15	<0.1	<0.1	<0.1	14.6	0.7	<1	<1			
00:30	<0.1	<0.1	<0.1	13.3	0.7	<1	<1			
00:45	<0.1	<0.1	<0.1	13.1	0.7	<1	<1			
01:00	<0.1	<0.1	<0.1	13.0	0.7	<1	<1			
01:15	<0.1	<0.1	<0.1	13.0	0.7	<1	<1			
01:30	<0.1	<0.1	<0.1	13.0	0.7	<1	<1			
01:45	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
02:00	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
02:15	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
02:30	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
02:45	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
03:00	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
03:15	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
03:30	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
03:45	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
04:00	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
04:15	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
04:30	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
04:45	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
05:00	<0.1	<0.1	<0.1	12.9	0.7	<1	<1			
Steady	<0.1	<0.1	<0.1	12.9	0.7	<1	<1	#####	2.05	1.30
Peak	0.0	0.0	0.0	19.4	0.7	0.0	0.0	0.0	2.05	1.30
Date 19/01/2023	Engine	Not er	es: NC		Baro	metric I	Pressure	e, mbar	10	006
						Pressu	ire Tren	d	Ste	ady
	Equipm	nent	GFM43	30		Air Te	emp (°C))		3

Gas Monitoring Certificate

C4164

Project Number Project Name Client

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					Dot	oction	imit				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			<0.1	<0.1			_111111	<i>~</i> 1	<0.1		
Image: set of the set		гт	<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1 5		BG
00:00 <0.1 <0.1 <0.1 18.4 2.3 <1 <1 4.05 4.0 00:15 <0.1	Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbg	Depth of Groundwater (mb
00:15 <0.1 <0.1 <0.1 19.5 0.6 <1 <1 00:30 <0.1	00:00	<0.1	<0.1	<0.1	18.4	2.3	<1	<1		4.05	4.00
00:30 <0.1 <0.1 <0.1 19.9 0.6 <1 <1 00:45 <0.1	00:15	<0.1	<0.1	<0.1	19.5	0.6	<1	<1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00:30	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
01:00 <0.1 <0.1 <0.1 19.9 0.6 <1 <1 01:15 <0.1	00:45	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
01:15 <0.1 <0.1 <0.1 19.9 0.6 <1 <1 01:30 <0.1	01:00	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
01:30 <0.1 <0.1 <0.1 19.9 0.6 <1 <1 01:45 <0.1	01:15	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	01:30	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01:45	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
02:15 <0.1	02:00	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
02:30 <0.1 <0.1 <0.1 19.9 0.6 <1 <1 02:45 <0.1	02:15	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
02:45 <0.1	02:30	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
03:00 <0.1	02:45	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
03:15 <0.1	03:00	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
03:30 <0.1	03:15	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
03:45 <0.1	03:30	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
04:00 <0.1	03:45	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
04:15 <0.1	04:00	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04:15	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
04:45 <0.1	04:30	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
05:00 <0.1	04:45	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
Steady <0.1 <0.1 <0.1 19.9 0.6 <1 <1 ##### 4.05 4.0 Peak 0.0 0.0 0.0 19.9 2.3 0.0 0.0 0.0 4.05 4.05 4.05 Date Notes: Barometric Pressure Trend Notes: Barometric Pressure Trend Steady	05:00	<0.1	<0.1	<0.1	19.9	0.6	<1	<1			
Peak 0.0 0.0 19.9 2.3 0.0 0.0 4.05 4.05 4.05 Date Notes: Barometric Pressure, mbar 1006 19/01/2023 Engineer NC Pressure Trend Steady	Steady	<0.1	<0.1	<0.1	19.9	0.6	<1	<1	#####	4.05	4.00
DateNotes:100619/01/2023EngineerNCBarometric Pressure, mbar1006Pressure TrendSteady	Peak	0.0	0.0	0.0	19.9	2.3	0.0	0.0	0.0	4.05	4.00
Pressure Trend Steady	Date 19/01/2023	Enginee	Not	es: NC		Baro	metric I	Pressure	e, mbar	10)06
Equipment GFM430 Air Temp (°C) 3		Equipm	ent	GFM43	30		Air Te	emp (°C)	u	Ste	auy 3

Gas Monitoring Certificate

C4164

Project Number Project Name Client

Joseph Norton SEMH Frank Shaw Associate

Frank Shaw Associates **Detection Limit** <0.1 <0.1 <0.1 <1 < 0.1 <0.1 <1 Depth of Groundwater (mb /olatile Organic Carbon (pp Depth of Installation. (mbgl Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime 00:00 <0.1 <0.1 <0.1 19.4 0.6 3.05 2.65 <1 <1 00:15 <0.1 <0.1 <0.1 18.5 2.3 <1 <1 00:30 < 0.1 <0.1 < 0.1 17.9 2.4 <1 <1 <0.1 00:45 < 0.1 <0.1 17.9 2.4 <1 <1 01:00 <0.1 <0.1 17.8 < 0.1 2.4 <1 <1 01:15 < 0.1 <0.1 <0.1 17.8 2.4 <1 <1 01:30 < 0.1 <0.1 < 0.1 17.8 2.4 <1 <1 01:45 < 0.1 <0.1 < 0.1 17.8 2.4 <1 <1 02:00 <0.1 <0.1 <0.1 17.8 2.4 <1 <1 02:15 < 0.1 <0.1 <0.1 17.8 2.4 <1 <1 02:30 17.8 <0.1 <0.1 <0.1 2.4 <1 <1 02:45 < 0.1 < 0.1 < 0.1 17.8 2.4 <1 <1 03:00 <0.1 <0.1 <0.1 17.8 2.4 <1 <1 03:15 <0.1 <0.1 <0.1 17.8 2.4 <1 <1 03:30 < 0.1 < 0.1 <0.1 17.8 2.4 <1 <1 03:45 < 0.1 <0.1 <0.1 17.8 2.4 <1 <1 04:00 <0.1 <0.1 <0.1 17.8 2.4 <1 <1 04:15 < 0.1 <0.1 <0.1 17.8 2.4 <1 <1 04:30 < 0.1 <0.1 < 0.1 17.8 2.4 <1 <1 04:45 < 0.1 <0.1 <0.1 17.8 2.4 <1 <1 05:00 < 0.1 <0.1 <0.1 17.8 2.4 <1 <1 Steady <0.1 <0.1 <0.1 17.8 2.4 <1 <1 ##### 3.05 2.65 Peak 0.0 0.0 0.0 19.4 2.4 0.0 0.0 0.0 3.05 2.65 Notes: Date 1006 19/01/2023 Engineer NC Barometric Pressure, mbar **Pressure Trend** Steady GFM430 Air Temp (°C) 3 Equipment

Project Number Project Name Client

Project Number Project Name	C4164 Joseph N Frank Sh	lorton Sl aw Asso	EMH ciates						W	501
				Det	ection I	imit				I
		<0.1	<0.1	<0.1	<0.1	<1	<1	< 0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	<0.1	<0.1	<0.1	19.2	0.5	<1	<1		3.05	1.98
00:15	<0.1	<0.1	<0.1	19.2	0.6	<1	<1			
00:30	<0.1	<0.1	<0.1	19.2	0.6	<1	<1			
00:45	<0.1	<0.1	<0.1	19.2	0.6	<1	<1			
01:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
01:15	<0.1	<0.1	<0.1	19.2	0.6	<1	<1			
01:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
01:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
05:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
Steady	<0.1	<0.1	<0.1	19.1	0.6	<1	<1	#####	3.05	1.98
Peak	0.0	0.0	0.0	19.2	0.6	0.0	0.0	0.0	3.05	1.98
Date 07/02/2023	Engine	Notes: Barometric Pressure, mbar					e, mbar	10)37	
						Pressu	ire Tren	d	STE	ADY
	Equipm	ient	GFM43	30		Air Te	emp (°C)			8

8

Gas Monitoring Certificate

Equipment

C4164

Project Number Project Name Client

Joseph Norton SEMH

Frank Shaw Associates **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Depth of Groundwater (mbg Volatile Organic Carbon (pp Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime 00:00 <0.1 <0.1 19.0 0.6 <1 <1 2.05 1.86 <0.1 00:15 <0.1 <0.1 <0.1 13.5 1.1 <1 <1 00:30 < 0.1 <0.1 < 0.1 13.4 1.1 <1 <1 00:45 < 0.1 <0.1 < 0.1 13.3 1.1 <1 <1 01:00 < 0.1 < 0.1 < 0.1 13.3 1.1 <1 <1 01:15 <0.1 <0.1 <0.1 13.3 <1 1.1 <1 01:30 < 0.1 <0.1 < 0.1 13.3 <1 1.1 <1 <0.1 <0.1 13.3 01:45 < 0.1 1.1 <1 <1 <0.1 13.3 02:00 < 0.1 <0.1 1.1 <1 <1 02:15 <0.1 <0.1 <0.1 13.3 1.1 <1 <1 02:30 < 0.1 <0.1 <0.1 13.3 1.1 <1 <1 02:45 <0.1 <0.1 <0.1 13.3 1.1 <1 <1 03:00 < 0.1 <0.1 <0.1 13.3 1.1 <1 <1 03:15 < 0.1 <0.1 <0.1 13.3 <1 <1 1.1 03:30 < 0.1 <0.1 < 0.1 13.3 1.1 <1 <1 03:45 < 0.1 <0.1 <0.1 13.3 1.1 <1 <1 <0.1 <0.1 04:00 < 0.1 13.3 1.1 <1 <1 <0.1 <0.1 04:15 < 0.1 13.3 1.1 <1 <1 04:30 <0.1 <0.1 13.3 < 0.1 1.1 <1 <1 04:45 <0.1 <0.1 13.3 < 0.1 1.1 <1 <1 05:00 < 0.1 <0.1 <0.1 13.3 <1 <1 1.1 13.3 Steady <0.1 <0.1 <0.1 1.1 <1 <1 ##### 2.05 1.86 Peak 0.0 0.0 0.0 0.0 0.0 19.0 1.1 0.0 2.05 1.86 Notes: Date 1037 07/02/2023 Engineer NC Barometric Pressure, mbar **Pressure Trend** STEADY GFM430 Air Temp (°C)

Gas Monitoring Certificate

C4164

Project Number Project Name Client

				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	< 0.1	<0.1	19.7	0.1	<1	<1		4.05	3.96
00:15	<0.1	<0.1	<0.1	19.5	0.6	<1	<1			
00:30	<0.1	<0.1	<0.1	19.2	0.6	<1	<1			
00:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
01:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
01:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
01:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
01:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
02:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
03:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:15	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:30	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
05:00	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
Steady	<0.1	<0.1	<0.1	19.1	0.6	<1	<1	#####	4.05	3.96
Peak	0.0	0.0	0.0	19.7	0.6	0.0	0.0	0.0	4.05	3.96
Date 07/02/2023	Enginee	Not	es: NC		Baro	metric I	Pressure	e, mbar	10)37
					ļ	Pressu	re Tren	d	STE	ADY
	Equipm	ent	GFM43	30		Air Te	emp (°C)		8

Gas Monitoring Certificate

C4164

Project Number Project Name Client

				Det	ection I	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Г		\U.1	<u>\0.1</u>	<u>\0.1</u>	<u>\0.1</u>			ر <u>، ب</u>		90
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (p	Depth of Installation. (mbg	Depth of Groundwater (mk
00:00	<0.1	<0.1	<0.1	19.8	0.0	<1	<1		3.05	DRY
00:15	<0.1	<0.1	<0.1	18.2	3.0	<1	<1			
00:30	<0.1	<0.1	<0.1	17.8	2.6	<1	<1			
00:45	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
01:00	<0.1	<0.1	<0.1	17.6	2.4	<1	<1			
01:15	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
01:30	<0.1	<0.1	<0.1	17.4	2.5	<1	<1			
01:45	<0.1	<0.1	<0.1	17.7	2.7	<1	<1			
02:00	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
02:15	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
02:30	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
02:45	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
03:00	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
03:15	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
03:30	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
03:45	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
04:00	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
04:15	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
04:30	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
04:45	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
05:00	<0.1	<0.1	<0.1	17.6	2.6	<1	<1			
Steady	<0.1	<0.1	<0.1	17.6	2.6	<1	<1	#####	3.05	DRY
Peak	0.0	0.0	0.0	19.8	3.0	0.0	0.0	0.0	3.05	0.00
Date 07/02/2023	Enginee	Not	es: NC		Baro	metric I	Pressure	e, mbar	10)37
						Pressu	ire Tren	d	STE	ADY
	Equipm	ent	GFM43	30		Air Te	emp (°C		,	8

Appendix X

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

HWOL_22-45051-20230104 152557

Description/Comments

General suite of contaminants. Proposed educational facility on brownfield site (former school / recreational building)

Project		Site
C4164		Joseph Norton SEMH School
Classified by		
Name:	Company:	HazWasteOnline™ provides a two day, hazardous waste classification course that covers the

Name: **Russell Corbyn** Date: **28 Feb 2023 14:16 GMT** Telephone: **01773 535 555**

Company: HSP Consulting Engineers Limited Lawrence House 4 Meadowbank Way Nottingham NG16 3SB

HazWasteOnline^{Tw} provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline[™] Certification:

Course Hazardous Waste Classification Most recent 3 year Refresher

CERTIFIED

Date 12 Sep 2017 01 Dec 2020

Next 3 year Refresher due by Dec 2023

Purpose of classification

2 - Material Characterisation

Address of the waste

Land off Deighton Road, Deighton, Huddersfield

Post Code N/A

SIC for the process giving rise to the waste

41201 Construction of commercial buildings

Description of industry/producer giving rise to the waste Development of an educational facility on brownfield site. Former school / recreational building demolished on site previously.

Description of the specific process, sub-process and/or activity that created the waste Waste likely to be created as part of excavations for foundations and likely landscaping to accommodate level changes.

Description of the waste

MADE GROUND TOPSOIL with range of anthropogenics. MADE GROUND demolition material (gravelly cobbly sand) with range of anthropogenics. Possibly some natural gravelly CLAYs (coal measures).

N
100.00

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01-17/11/2022-0.1	0.1	Non Hazardous		3
2	WS02-17/11/2022-0.2	0.2	Non Hazardous		6
3	WS02-17/11/2022-1.0	1.0	Non Hazardous		9
4	WS03-17/11/2022-0.15	0.15	Non Hazardous		10
5	WS03-17/11/2022-1.8	1.8	Non Hazardous		13
6	WS04-17/11/2022-0.2	0.2	Non Hazardous		14
7	WS05-17/11/2022-0.7	0.7	Non Hazardous		17
8	WS07-18/11/2022-0.3	0.3	Non Hazardous		20
9	WS07-18/11/2022-0.7	0.7	Non Hazardous		23
10	WS07-18/11/2022-2.5	2.5	Non Hazardous		26
11	WS08-18/11/2022-0.6	0.6	Non Hazardous		27
12	WS08-18/11/2022-1.0	1.0	Non Hazardous		30
13	WS08-18/11/2022-3.0	3.0	Non Hazardous		31
14	WS09-18/11/2022-0.1	0.1	Non Hazardous		32
15	WS09-18/11/2022-0.5	0.5	Unknown. Chemistry data not		35
			provided.		
16	WS09-18/11/2022-1.0	1.0	Non Hazardous		36
17	WS10-18/11/2022-0.15	0.15	Non Hazardous		37
18	TP01	0.10	Non Hazardous		40
19	TP01[2]	0.50	Non Hazardous		42
20	TP02	0.20	Non Hazardous		44
21	TP02[2]	0.60	Non Hazardous		47
22	TP04	0.20	Hazardous	HP 7, HP 11	50
23	TP05	0.10	Non Hazardous		53

Related documents

#	Name	Description
1	HWOL_22-45051-20230104 152557.hwol	Eurofins Chemtest .hwol file used to populate the Job
2	Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Russell Corbyn

Created date: 28 Feb 2023 14:16 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	56
Appendix B: Rationale for selection of metal species	57
Appendix C: Version	58

Classification of sample: WS01-17/11/2022-0.1

Sample details

Sample name:	LoW Code:	
WS01-17/11/2022-0.1	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.1 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	y trioxide }	1200 64 4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %	r	<lod< th=""></lod<>
2	\$	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
3	*	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide; boric oxide</mark> } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.32	mg/kg	1.142	0.366	mg/kg	0.0000366 %		
5	\$	chromium in chrom <mark>chromium(III) oxide</mark>	hium(III) compound (worst case) }	IS {		29	mg/kg	1.462	42.385	mg/kg	0.00424 %		
6	*	chromium in chrom oxide 024-001-00-0	hium(VI) compound	Is { chromium(VI)	-	<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	*	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>ide</mark> } 1317-39-1		36	mg/kg	1.126	40.532	mg/kg	0.00405 %		
8	\$	lead { <pre>lead comp specified elsewhere 082-001-00-6</pre>	oounds with the exe e in this Annex (wo	ception of those orst case) }	1	62	mg/kg		62	mg/kg	0.0062 %		
9	4	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of me iric sulphide and th innex }	ose specified	1	0.1	mg/kg		0.1	mg/kg	0.00001 %		
10	4	nickel { nickel(II) ca 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		20	mg/kg	2.022	40.448	mg/kg	0.00404 %		
11	4	selenium { nickel so 028-031-00-5	elenate } 239-125-2	15060-62-5		0.67	mg/kg	2.554	1.711	mg/kg	0.000171 %		
12	*	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2	_	78	mg/kg	1.245	97.088	mg/kg	0.00971 %		
13	۵	TPH (C6 to C40) p	etroleum group	ТРН		750	mg/kg		750	mg/kg	0.075 %		

#		EU CLP index EC Number CAS Number		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used	
		number			ц С							ž	
14		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		<lod< td=""></lod<>
Ľ		601-020-00-8	200-753-7	71-43-2									
15		toluene	000 005 0	400.000		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
\vdash		601-021-00-3	203-625-9	108-88-3	-								
16	۲	ethylbenzene	202-840-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xvlene	202-043-4	100-41-4									
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	nH			-								
19	۲	P. 1		PH		8.5	рН		8.5	рН	8.5 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		1	mg/kg		1	mg/kg	0.0001 %		
24		acenaphthylene				0.52			0.52		0.000053.8/		
21			205-917-1	208-96-8		0.53	mg/kg		0.53	тід/кд	0.000053 %		
22	0	acenaphthene	201-469-6	83-32-9		2.7	mg/kg		2.7	mg/kg	0.00027 %		
23		fluorene				23	ma/ka		23	ma/ka	0.00023 %		
			201-695-5	86-73-7							0.00020 /0		
24	0	phenanthrene				22	mg/kg		22	mg/kg	0.0022 %		
\vdash		anthropping	201-581-5	85-01-8	-								
25	۲	anthracene	204-371-1	120-12-7		7.3	mg/kg		7.3	mg/kg	0.00073 %		
		fluoranthene	204 071 1	120 12 1									
26			205-912-4	206-44-0		40	mg/kg		40	mg/kg	0.004 %		
27		pyrene				34	ma/ka		34	ma/ka	0.0034 %		
			204-927-3	129-00-0									
28		benzo[a]anthracen	e			19	mg/kg		19	mg/kg	0.0019 %		
		601-033-00-9	200-280-6	56-55-3									
29		601-048-00-0	205-923-4	218-01-9		18	mg/kg		18	mg/kg	0.0018 %		
		benzo[b]fluoranthe	ne		$\left \right $	25			25		0.0005.00		
30		601-034-00-4	205-911-9	205-99-2		25	mg/kg		25	під/кд	0.0025 %		
31		benzo[k]fluoranthe	ne			8.7	mg/ka		8.7	ma/ka	0.00087 %		
Ľ		601-036-00-5	205-916-6	207-08-9	-		59						
32		benzo[a]pyrene; be	enzo[def]chrysene	50.00.0		24	mg/kg		24	mg/kg	0.0024 %		
-	_	001-032-00-3	200-028-5	DU-32-8	\vdash								
33	۲		205-893-2	193-39-5	-	14	mg/kg		14	mg/kg	0.0014 %		
		dibenz[a,h]anthrac	ene		-	0.0			0.0		0.00000.0/		
34		601-041-00-2	200-181-8	53-70-3		2.2	тіg/кĝ		2.2	тід/кĝ	0.00022 %		
35	۲	benzo[ghi]perylene	e			12	mg/ka		12	mg/ka	0.0012 %		
	_		205-883-8	191-24-2			0.9			5.3			
36	4	vanadium { ^a diva pentoxide }	hadium pentaoxid	e; vanadium		24	mg/kg	1.785	42.844	mg/kg	0.00428 %		
-		U∠3-UU1-UU-8	K12-232-8	1314-62-1	-								
37				P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	L	1								Total:	0.133 %	Γ	1

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.075%)

Classification of sample: WS02-17/11/2022-0.2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
WS02-17/11/2022-0.2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.2 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor 051-005-00-X	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		8.6	mg/kg	1.32	11.355	mg/kg	0.00114 %		
3	4	boron { <mark>diboron tric</mark> 005-008-00-8	xide; boric oxide } 215-125-8	1303-86-2		0.51	mg/kg	3.22	1.642	mg/kg	0.000164 %		
4	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.48	mg/kg	1.142	0.548	mg/kg	0.0000548 %		
5	4	chromium in chrom chromium(III) oxide	hium(III) compound (worst case) }	Is { •		14	mg/kg	1.462	20.462	mg/kg	0.00205 %		
6	4	chromium in chrom oxide 024-001-00-0	hium(VI) compound	Is { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>:ide</mark> } 1317-39-1		22	mg/kg	1.126	24.77	mg/kg	0.00248 %		
8	4	lead { ^e lead comp specified elsewher 082-001-00-6	counds with the ex e in this Annex (wo	ception of those orst case) }	1	19	mg/kg		19	mg/kg	0.0019 %		
9	4	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of mo rric sulphide and th nnex }	ercury with the lose specified	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	4	nickel { nickel(II) cz 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		18	mg/kg	2.022	36.403	mg/kg	0.00364 %		
11	4	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		0.43	mg/kg	2.554	1.098	mg/kg	0.00011 %		
12	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		69	mg/kg	1.245	85.885	mg/kg	0.00859 %		
13	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#	Determinand		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used		
		EU CLP index number	EC Number	CAS Number	5							MO	
14		benzene	boo 750 7	74 42 2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-		toluene	200-753-7	71-43-2	-						<u> </u>		
15		601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
10		ethylbenzene				0.004			0.004		0.0000001.0/	E	1.00
16		601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< th=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	of hydrogen cyani lex cyanides such nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, e and those	ŝ	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
10		pН	1	1		0.2			0.2		0.2 pH		
19				PH	Ĺ	9.5	рп		9.5	μп	9.3 pn		
20		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3								-	
21	۲	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	200 017 1	200 30 0		0.4			0.4		0.00004.0/	F	1.00
22		· ·	201-469-6	83-32-9		<0.1	mg/кg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	8	fluorene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7						313			
24	Θ	phenanthrene	bo4 504 5	05.04.0		0.18	mg/kg		0.18	mg/kg	0.000018 %		
-	_	anthracene	201-581-5	82-01-8	-								
25	۲	anunacene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26		fluoranthene	1			0.27	ma/ka		0.27	ma/ka	0.000027 %		
20			205-912-4	206-44-0		0.27			0.27	iiig/kg	0.000027 /0		
27	۲	pyrene	bo 4 007 0	400.00.0		0.22	mg/kg		0.22	mg/kg	0.000022 %		
		hanzalalanthragan	204-927-3	129-00-0	-								
28		601-033-00-9	200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		chrysene	F00 200 0			0.4			0.4		0.00001.0/		1.00
29		601-048-00-0	205-923-4	218-01-9		<0.1	тд/кд		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthe	ne			<0.1	mg/ka		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		601-034-00-4	205-911-9	205-99-2	-							-	
31		Denzo[k]fluoranthe	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]pyrene; be	enzo[def]chrysene	-0.000		<u></u>			<u> </u>		0.00001.0/	F	1.00
32		601-032-00-3	200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	۲	indeno[123-cd]pyre	ene			<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5									
34		dibenz[a,h]anthrac	ene	52 70 2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzolahilpervlene	200-101-0	p3-70-3	┝							H	
35	9		205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	vanadium { [●] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	e; vanadium		16	mg/kg	1.785	28.563	mg/kg	0.00286 %		
37	0	monohydric pheno	ls			<i>-</i> 01	ma/ka		<i>c</i> 0 1	ma/ka	<0.00001 %		
				P1186	1	NO.1	ing/kg		NO.1	ing/kg			
										Total:	0.0246 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS02-17/11/2022-1.0

Sample details

Sample name:	LoW Code:	
WS02-17/11/2022-1.0	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 dolor				USCU
1	9	pН		PH	_	5.8 pH		5.8 pH	5.8 pH		
								Total:	0%		

Key 0

- User supplied data
- Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS03-17/11/2022-0.15

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
WS03-17/11/2022-0.15	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.15 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	~	antimony {	ny trioxide } 215-175-0	1309-64-4		2.6	mg/kg	1.197	3.112	mg/kg	0.000311 %		
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		10	mg/kg	1.32	13.203	mg/kg	0.00132 %		
3	~	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide; boric oxide</mark> } 215-125-8	1303-86-2		0.81	mg/kg	3.22	2.608	mg/kg	0.000261 %		
4	~	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.85	mg/kg	1.142	0.971	mg/kg	0.0000971 %		
5	4	chromium in chrom <mark>chromium(III) oxide</mark>	hium(III) compound e (worst case) 215-160-9	ls { •		37	mg/kg	1.462	54.078	mg/kg	0.00541 %		
6	4	chromium in chrom <mark>oxide</mark> } 024-001-00-0	hium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) o</mark> v 215-270-7	<mark>(ide</mark> } 1317-39-1		40	mg/kg	1.126	45.036	mg/kg	0.0045 %		
8	4	lead { [•] lead comp specified elsewher 082-001-00-6	oounds with the ex e in this Annex (wo	ception of those prst case) }	1	110	mg/kg		110	mg/kg	0.011 %		
9	4	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of m iric sulphide and th innex }	ercury with the lose specified	1	0.09	mg/kg		0.09	mg/kg	0.000009 %		
10	4	nickel { nickel(II) cz 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		22	mg/kg	2.022	44.493	mg/kg	0.00445 %		
11	~	selenium { nickel se 028-031-00-5	elenate } 239-125-2	15060-62-5		0.64	mg/kg	2.554	1.634	mg/kg	0.000163 %		
12	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		100	mg/kg	1.245	124.471	mg/kg	0.0124 %		
13	۲	TPH (C6 to C40) p	etroleum group	ТРН		38	mg/kg		38	mg/kg	0.0038 %		

#			Determinand		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		number	EC Number	CAS Number	5							MO	
14		benzene	1	4		<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		
14		601-020-00-8	200-753-7	71-43-2			ing/kg			iiig/itg	<0.0000001 //		
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_							-	
16	۲	etnyibenzene	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xvlene	202-043-4	100-41-4								H	
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such mercuric oxycyanic re in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		pH											
19	9	1 · · · ·		PH	-	8.7	рН		8.7	рН	8.7 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		210	mg/kg		210	mg/kg	0.021 %		
21	0	acenaphthylene				0.91	ma/ka		0.91	ma/ka	0.000091 %		
			205-917-1	208-96-8	1								
22	Θ	acenaphthene	201-469-6	83-32-9		28	mg/kg		28	mg/kg	0.0028 %		
23	۲	fluorene				22	mg/kg		22	mg/kg	0.0022 %		
			201-695-5	86-73-7	-							-	
24	8	pnenanthrene	201-581-5	85-01-8		140	mg/kg		140	mg/kg	0.014 %		
		anthracene	201-301-3	05-01-0								+	
25	-		204-371-1	120-12-7		29	mg/kg		29	mg/kg	0.0029 %		
26		fluoranthene				190	ma/ka		190	ma/ka	0.019 %		
			205-912-4	206-44-0	1						0.010 //		
27	۲	pyrene	bo 4 007 0	400.00.0		160	mg/kg		160	mg/kg	0.016 %		
		benzolalanthracen	204-927-3	129-00-0									
28		601-033-00-9	200-280-6	56-55-3		95	mg/kg		95	mg/kg	0.0095 %		
20		chrysene				01			01		0.0001.0/		
29		601-048-00-0	205-923-4	218-01-9		91	mg/kg		91	шу/ку	0.0091 %		
30		benzo[b]fluoranthe	ene			100	mg/kg		100	mg/kg	0.01 %		
<u> </u>		601-034-00-4	205-911-9	205-99-2	_							-	
31		Denzo[K]fluoranthe	205-916-6	207-08-9	-	44	mg/kg		44	mg/kg	0.0044 %		
-		benzo[alpvrene: he	enzo[deflchrvsene	201-00-3	┢							+	
32		601-032-00-3	200-028-5	50-32-8		98	mg/kg		98	mg/kg	0.0098 %		
33	0	indeno[123-cd]pyre	ene	1		62	ma/ka		62	ma/ka	0.0062 %		
			205-893-2	193-39-5						iiig/kg	0.0002 //		
34		dibenz[a,h]anthrac	ene	50.70.0		13	mg/kg		13	mg/kg	0.0013 %		
		601-041-00-2	200-181-8	53-70-3	-								
35	0	Denzolânijberviene	205-883-8	191-24-2	-	53	mg/kg		53	mg/kg	0.0053 %		
36	4	vanadium { ^a diva pentoxide } 023-001-00-8	nadium pentaoxid	e; vanadium		25	mg/kg	1.785	44.63	mg/kg	0.00446 %		
	0	monohydric pheno	ls		\vdash	<u> </u>			<u> </u>		0.00001.01		
37	-			P1186	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
										Total:	0.182 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0038%)

Classification of sample: WS03-17/11/2022-1.8

Sample details

Sample name:	LoW Code:	
WS03-17/11/2022-1.8	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.8 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
14%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#			Determinand	Determinand		User entered	User entered data		Compour	d conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			1 dotor			U D D D		USCU
1	9	pН		PH	_	7.7	рН		7.7	pН	7.7 pH		
		·								Total:	0%		

Key 0

- User supplied data
- Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS04-17/11/2022-0.2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
WS04-17/11/2022-0.2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.2 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony {	<mark>ny trioxide</mark> } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tri 033-003-00-0	<mark>ioxide</mark>	1327-53-3		6.7	mg/kg	1.32	8.846	mg/kg	0.000885 %		
3	~	boron { <mark>diboron tric</mark> 005-008-00-8	xide; boric oxide } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	~	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.26	mg/kg	1.142	0.297	mg/kg	0.0000297 %		
5	4	chromium in chrom <mark>chromium(III) oxide</mark>	hium(III) compound e (worst case) 215-160-9	Is {		18	mg/kg	1.462	26.308	mg/kg	0.00263 %		
6	4	chromium in chrom <mark>oxide</mark> } 024-001-00-0	hium(VI) compound	Is { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper {	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>iide</mark> } 1317-39-1		25	mg/kg	1.126	28.147	mg/kg	0.00281 %		
8	4	lead { ^e lead comp specified elsewhere 082-001-00-6	oounds with the ex e in this Annex (wo	ception of those orst case) }	1	57	mg/kg		57	mg/kg	0.0057 %		
9	~	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of me iric sulphide and th innex }	ercury with the lose specified	1	0.07	mg/kg		0.07	mg/kg	0.000007 %		
10	4	nickel { nickel(II) ca 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		14	mg/kg	2.022	28.314	mg/kg	0.00283 %		
11	4	selenium { nickel se 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5		0.49	mg/kg	2.554	1.251	mg/kg	0.000125 %		
12	~	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		61	mg/kg	1.245	75.928	mg/kg	0.00759 %		
13	٥	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#			Determinand		P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	: Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CL							MO	
14		benzene	1	4		<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		<lod< th=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
15		toluene	000 005 0	100.000		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3	-								
16	•		202 840 4	100 41 4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		vulene	202-049-4	100-41-4	-								
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< th=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
10		pН		1		0.4			0.4		9.4		
19				PH		8.4	рн		8.4	рн	8.4 pH		
20		naphthalene				0.89	ma/ka		0.89	ma/ka	0.000089 %		
		601-052-00-2	202-049-5	91-20-3									
21	8	acenaphthylene	205 017 1	b08.06.8		0.4	mg/kg		0.4	mg/kg	0.00004 %		
		acenaphthene	205-917-1	200-90-0	+								
22	ľ		201-469-6	83-32-9		2.4	mg/kg		2.4	mg/kg	0.00024 %		
23	8	fluorene	1			3.2	ma/ka		3.2	ma/ka	0 00032 %		
20			201-695-5	86-73-7		0.2	ing/kg				0.00032 //		
24	Θ	phenanthrene		T		38	mg/kg		38	mg/kg	0.0038 %		
			201-581-5	85-01-8	-								
25	8	anthracene	204-371-1	120-12-7	-	7.2	mg/kg		7.2	mg/kg	0.00072 %		
		fluoranthene	2040711	120 12 1									
26			205-912-4	206-44-0		45	mg/kg		45	mg/kg	0.0045 %		
27		pyrene				36	ma/ka		36	ma/ka	0 0036 %		
			204-927-3	129-00-0									
28		benzo[a]anthracen	e	T		19	mg/kg		19	mg/kg	0.0019 %		
		601-033-00-9	200-280-6	56-55-3	-								
29		cnrysene	205-023-4	218-01-9		18	mg/kg		18	mg/kg	0.0018 %		
-		benzo[b]fluoranthe	ne	F 10-01-3	\vdash							$\left \right $	
30		601-034-00-4	205-911-9	205-99-2		22	mg/kg		22	mg/kg	0.0022 %		
31		benzo[k]fluoranthe	ne	·		8.5	ma/ka		85	ma/ka	0.00085 %		
Ľ		601-036-00-5	205-916-6	207-08-9	1	0.0							
32		benzo[a]pyrene; be	enzo[def]chrysene	50.00 0		20	mg/kg		20	mg/kg	0.002 %		
		601-032-00-3	200-028-5	50-32-8	-								
33	8		205-893-2	193-39-5	-	12	mg/kg		12	mg/kg	0.0012 %		
24		dibenz[a,h]anthrac	ene			0.4			0.4		0.00004.0/		
34		601-041-00-2	200-181-8	53-70-3		2.4	mg/кĝ		2.4	під/кд	0.00024 %		
35	0	benzo[ghi]perylene	e			10	mg/kg		10	mg/kg	0.001 %		
	-		205-883-8	191-24-2	-								
36	4	vanadium { • diva pentoxide 023-001-00-8	nadium pentaoxid	e; vanadium		17	mg/kg	1.785	30.348	mg/kg	0.00303 %		
		monohydric pheno	ls		\vdash	<u> </u>			<u> </u>		0.00001.01		
37		, , , , , , , , , , , , , , , , , , ,		P1186	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
										Total:	0.0517 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS05-17/11/2022-0.7

Sample details

Sample name:	LoW Code:	
WS05-17/11/2022-0.7	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.7 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.8%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.8% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	*	antimony { antimor	ny trioxide }	4000 04 4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
_	8	arsenic { arsenic tr	ioxide }	1309-64-4		4.0		4.00	0.500		0.000054.0/		
2		033-003-00-0	215-481-4	1327-53-3		1.9	тід/кд	1.32	2.509	тід/кд	0.000251 %		
3	e	boron { diboron tric	xide; boric oxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
		005-008-00-8	215-125-8	1303-86-2									
4	4	cadmium { cadmiu	m oxide }	4000 40 0		0.96	mg/kg	1.142	1.097	mg/kg	0.00011 %		
		048-002-00-0	215-146-2	1306-19-0									
5	*	chromium in chrom chromium(III) oxide	nium(III) compound <mark>e (worst case)</mark> }	ls { ●		15	mg/kg	1.462	21.923	mg/kg	0.00219 %		
			215-160-9	1308-38-9									
6	4	chromium in chrom oxide }	hium(VI) compound	ds {		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0								-	
7	*	029-002-00-X	215-270-7	1317-39-1	-	12	mg/kg	1.126	13.511	mg/kg	0.00135 %		
8	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	pounds with the ex e in this Annex (wo	ception of those prst case) }	1	63	mg/kg		63	mg/kg	0.0063 %		
9	\$	mercury { inorganic exception of mercu elsewhere in this A	c compounds of me iric sulphide and th innex }	ercury with the lose specified	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		nickel { nickel(II) ca	arbonate }										
10	*	028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	-	16	mg/kg	2.022	32.359	mg/kg	0.00324 %		
11	*	selenium {	elenate }	· · · · · · · · · · · · · · · · · · ·		0.43	ma/ka	2,554	1.098	ma/ka	0.00011 %		
		028-031-00-5	239-125-2	15060-62-5									
12	4	zinc { zinc oxide }	215-222-5	1314-13-2		110	mg/kg	1.245	136.919	mg/kg	0.0137 %		
13	0	TPH (C6 to C40) p	etroleum group	ТРН	_	130	mg/kg		130	mg/kg	0.013 %		

#		Determinand		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	: Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CL							MC	
14		benzene	1			-0.001	malka		-0.001	malka	-0.000001.8/		
14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	тід/кд	<0.000001 %		<lod< td=""></lod<>
15		toluene				<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
16	۲	ethylbenzene		100 11 1		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5								_			
19	۵	РП		PH	{	5.7	рН		5.7	рН	5.7 pH		
		naphthalene]	<u>r</u> · ·	┢	0.1			0.1		.0.00004.01		.1.05
20		601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	acenaphthylene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	_								
22	۵	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	fluorene	201 100 0	00 02 0		0.4			0.1		0.00004.0/		1.00
23			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	8	phenanthrene				0.12	mg/kg		0.12	mg/kg	0.000012 %		
			201-581-5	85-01-8									
25	۵	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluoranthene	204 071 1	120 12 1		0.40			0.40		0.000040.0/		
26			205-912-4	206-44-0		0.12	mg/kg		0.12	mg/kg	0.000012 %		
27	۲	pyrene				0.13	mg/kg		0.13	mg/kg	0.000013 %		
<u> </u>			204-927-3	129-00-0									
28		benzo[a]anthracen	e	66 65 2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		chrysene	200-200-0	00-00-0	-								
29		601-048-00-0	205-923-4	218-01-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthe	ne	<u>.</u>	1	<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
Ľ		601-034-00-4	205-911-9	205-99-2	1		iiig/iig						.200
31		benzo[k]fluoranthe	ne	007.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash		001-036-00-5	LO2-A16-6	∠07-08-9	-							\vdash	
32		601-032-00-3	200-028-5	50-32-8	{	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	indeno[123-cd]pyre	ene			.0.4			.0.4		-0.00001.0/		1.00
33			205-893-2	193-39-5		<0.1	тg/кg		<0.1	mg/ĸg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac	ene			<0.1	mg/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3			33						
35	٥	penzolghijperylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash	æ		200-000-0	131-24-2	-							\square	
36	*	vanadium { diva pentoxide 	nadium pentaoxid	e; vanadium		15	mg/kg	1.785	26.778	mg/kg	0.00268 %		
		023-001-00-8	215-239-8	1314-62-1									
37	0	monohydric pheno	ls			<0.1	mg/ka		<0.1	mg/ka	<0.00001 %		<lod< td=""></lod<>
				P1186			0.9				0.0407.0/		-
1										iotal:	0.0437 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.013%)

Classification of sample: WS07-18/11/2022-0.3

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
WS07-18/11/2022-0.3	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony {	<mark>ny trioxide</mark> } 215-175-0	1309-64-4	-	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark>	1327-53-3		33	mg/kg	1.32	43.571	mg/kg	0.00436 %		
3	4	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide; boric oxide</mark> } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.13	mg/kg	1.142	0.149	mg/kg	0.0000149 %		
5	4	chromium in chrom <mark>chromium(III) oxide</mark>	hium(III) compound e (worst case) 215-160-9	ls { •		19	mg/kg	1.462	27.77	mg/kg	0.00278 %		
6	4	chromium in chrom <mark>oxide</mark> } 024-001-00-0	hium(VI) compound	1333-82-0		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>(ide</mark> } 1317-39-1		42	mg/kg	1.126	47.287	mg/kg	0.00473 %		
8	4	lead { ^e lead comp specified elsewher 082-001-00-6	oounds with the ex e in this Annex (wo	ception of those orst case) }	1	8.1	mg/kg		8.1	mg/kg	0.00081 %		
9	~	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of me iric sulphide and th innex }	ercury with the lose specified	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	4	nickel { nickel(II) cz 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		25	mg/kg	2.022	50.56	mg/kg	0.00506 %		
11	4	selenium { nickel s 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5		0.67	mg/kg	2.554	1.711	mg/kg	0.000171 %		
12	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		17	mg/kg	1.245	21.16	mg/kg	0.00212 %		
13	٥	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#		Determinand		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used	
		number	EC Number	CAS Number	С							MO	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2								-	
15		toluene	203 625 0	109 99 3	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	203-023-9	100-00-3									
16		601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
10	8	pH	1			0.0			0.0		0.0 -11		
19				PH		9.3	рн		9.3	рн	9.3 рн		
20		naphthalene				0.21	mg/kg		0.21	mg/kg	0.000021 %		
	_	601-052-00-2	202-049-5	91-20-3	-								
21	۵		205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluoropo	201-469-6	83-32-9	-							-	
23	۲		201-695-5	86-73-7	-	0.12	mg/kg		0.12	mg/kg	0.000012 %		
24	8	phenanthrene	1			1 1	ma/ka		11	ma/ka	0.00011 %		
<u> </u>			201-581-5	85-01-8	_								
25	۲	anthracene	204-371-1	120-12-7	-	0.28	mg/kg		0.28	mg/kg	0.000028 %		
26	8	fluoranthene		120 12 1		13	ma/ka		13	ma/ka	0.00013 %		
			205-912-4	206-44-0	1				1.0				
27	Θ	pyrene	204-927-3	129-00-0		0.97	mg/kg		0.97	mg/kg	0.000097 %		
00		benzo[a]anthracen	e			0.50			0.50		0.000050.0/		
28		601-033-00-9	200-280-6	56-55-3		0.53	тд/кд		0.53	mg/kg	0.000053 %		
29		chrysene				0.47	mg/ka		0.47	mg/ka	0.000047 %		
		601-048-00-0	205-923-4	218-01-9	_		0. 9					-	
30		benzo[b]fluoranthe	ne 205-911-9	205-99-2	-	0.49	mg/kg		0.49	mg/kg	0.000049 %		
		benzo[k]fluoranthe	ne	_00 00 Z	╞	- ·-			c :=			+	
31		601-036-00-5	205-916-6	207-08-9		0.17	mg/kg		0.17	mg/kg	0.000017%		
32		benzo[a]pyrene; be	enzo[def]chrysene			0.37	mg/kg		0.37	mg/kg	0.000037 %		
		601-032-00-3	200-028-5	50-32-8	-							-	
33	Θ	Indeno[123-cd]pyre	205-893-2	193-39-5		0.29	mg/kg		0.29	mg/kg	0.000029 %		
34		dibenz[a,h]anthrac	ene			<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	1							-	
35	0	benzo[ghi]perylene	205-883-8	101-24-2	-	0.25	mg/kg		0.25	mg/kg	0.000025 %		
36	4	vanadium { • diva pentoxide }	nadium pentaoxid	e; vanadium	_	33	mg/kg	1.785	58.911	mg/kg	0.00589 %		
27	8	monohydric pheno	ls		\square	-0.1	meller		-0.1	maller	-0.00001.0/		
31				P1186		<0.1	тg/кg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_				_					Total:	0.0282 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS07-18/11/2022-0.7

Sample details

Sample name:	LoW Code:	
WS07-18/11/2022-0.7	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.7 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	by trioxide }	1200 64 4	_	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	*	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3	-	3.5	mg/kg	1.32	4.621	mg/kg	0.000462 %		
3	\$	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide; boric oxide</mark> } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	*	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0	-	0.74	mg/kg	1.142	0.845	mg/kg	0.0000845 %		
5	4	chromium in chrom chromium(III) oxide	hium(III) compound (worst case) 215,160,9	ls { •		22	mg/kg	1.462	32.154	mg/kg	0.00322 %		
6	\$	chromium in chrom oxide 024-001-00-0	hium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	\$	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) o</mark> 215-270-7	<mark>(ide</mark> }	-	19	mg/kg	1.126	21.392	mg/kg	0.00214 %		
8	\$	lead { ^e lead comp specified elsewhere 082-001-00-6	oounds with the ex e in this Annex (wo	ception of those prst case) }	1	28	mg/kg		28	mg/kg	0.0028 %		
9	*	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of m rric sulphide and th nnex }	ercury with the nose specified	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
	4	nickel { <mark>nickel(II) ca</mark>	arbonate }										
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		36	mg/kg	2.022	72.807	mg/kg	0.00728 %		
11	*	selenium { nickel so 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5	-	0.69	mg/kg	2.554	1.762	mg/kg	0.000176 %		
12	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		120	mg/kg	1.245	149.366	mg/kg	0.0149 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

#		Determinand		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	: Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CL							MC	
14		benzene	1			-0.001	malka		-0.001	malka	-0.000001.8/		
14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
15		toluene				<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
16	۲	ethylbenzene		100 11 1		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	۵	РП		PH	{	7.1	pН		7.1	рН	7.1 pH		
		naphthalene]	<u>r</u> · ·	\vdash	0.1			0.4		.0.00004.01		.1.05
20		601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	۲	acenaphthylene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
_			205-917-1	208-96-8	-								
22	۵	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	fluorene	201 100 0	00 02 0		0.4			0.4		0.00004.0/		
23			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	8	phenanthrene				0.22	mg/kg		0.22	mg/kg	0.000022 %		
			201-581-5	85-01-8									
25	۵	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluoranthene	204 071 1	120 12 1		0.04			0.04		0.000004.0/		
26			205-912-4	206-44-0		0.21	mg/kg		0.21	mg/kg	0.000021 %		
27	۲	pyrene				0.2	mg/kg		0.2	mg/kg	0.00002 %		
			204-927-3	129-00-0									
28		benzo[a]anthracen	e	56 55 3		0.19	mg/kg		0.19	mg/kg	0.000019 %		
-		chrysene	200-200-0	00-00-0	-								
29		601-048-00-0	205-923-4	218-01-9	{	0.22	mg/kg		0.22	mg/kg	0.000022 %		
30		benzo[b]fluoranthe	ne			-0.1	ma/ka		<01	ma/ka	<0.00001 %		
		601-034-00-4	205-911-9	205-99-2	1	NO.1	ing/kg		NO.1	ing/kg			~200
31		benzo[k]fluoranthe	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		601-036-00-5	205-916-6	207-08-9	-								
32		601-032-00-3	200-028-5	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		indeno[123-cd]pyre	ene	00 02 0									
33			205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac	ene			<0.1	mg/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3			33			59			
35	٥	penzolghijperylene	205-883-8	191-24-2	-	0.16	mg/kg		0.16	mg/kg	0.000016 %		
\vdash	æ		200-000-0	131-24-2	-							$\left \right $	
36	*	pentoxide }	nadium pentaoxid	e, vanadium		15	mg/kg	1.785	26.778	mg/kg	0.00268 %		
		023-001-00-8	215-239-8	1314-62-1									
37	0	monohydric pheno	ls			<0.1	mg/ka		<0.1	mg/ka	<0.00001 %		<lod< td=""></lod<>
<u> </u>				P1186			0.9				0.0250.04		-
1										iotal:	0.0356 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS07-18/11/2022-2.5

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS07-18/11/2022-2.5	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.5 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 00101		Value		USCU
1	8	рН		PH		6.6 pH		6.6 pH	6.6 pH		
		х	~	~		•		Total:	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS08-18/11/2022-0.6

Sample details

Sample name:	LoW Code:	
WS08-18/11/2022-0.6	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.6 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
12%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 12% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	\$	antimony { antimor	hy trioxide }	1200 64 4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		5.9	mg/kg	1.32	7.79	mg/kg	0.000779 %		
3	4	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide; boric oxide</mark> } 215-125-8	1303-86-2		2.1	mg/kg	3.22	6.762	mg/kg	0.000676 %		
4	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0	-	0.23	mg/kg	1.142	0.263	mg/kg	0.0000263 %		
5	4	chromium in chrom chromium(III) oxide	hium(III) compound (worst case) }	Is { •		14	mg/kg	1.462	20.462	mg/kg	0.00205 %		
6	4	chromium in chrom oxide 024-001-00-0	hium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>(ide</mark> }	-	13	mg/kg	1.126	14.637	mg/kg	0.00146 %		
8	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	oounds with the ex e in this Annex (wo	ception of those prst case) }	1	22	mg/kg		22	mg/kg	0.0022 %		
9	*	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of m pric sulphide and th nnex }	ercury with the nose specified	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	\$	nickel { nickel(II) ca 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	-	12	mg/kg	2.022	24.269	mg/kg	0.00243 %		
11	4	selenium {	elenate } 239-125-2	15060-62-5		0.5	mg/kg	2.554	1.277	mg/kg	0.000128 %		
12	\$	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		390	mg/kg	1.245	485.438	mg/kg	0.0485 %		
13	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#			Determinand	CAC Number	P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	: Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CL							MO	
14		benzene	<u>I</u>	1		~0.001	ma/ka		<0.001	ma/ka	<0.000001.%		
14		601-020-00-8	200-753-7	71-43-2		<0.001	iiig/kg				<0.0000001 /8		
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
16	۲	etnyibenzene	202-840-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xvlene	202-043-4	100-41-4									
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	nH											
19	۲	P. 1		PH	{	9.4	pН		9.4	рН	9.4 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		0.44	mg/kg		0.44	mg/kg	0.000044 %		
21	۲	acenaphthylene	,	1		~0.1	ma/ka		<01	ma/ka	<0.00001 %		
21			205-917-1	208-96-8	1	<0.1	iiig/kg		<0.1	iiig/kg	<0.00001 /0		
22	۵	acenaphthene	201-469-6	83-32-9		0.13	mg/kg		0.13	mg/kg	0.000013 %		
23		fluorene	,	1		~0.1	ma/ka		<01	ma/ka	<0.00001 %		
20			201-695-5	86-73-7		<0.1	iiig/itg		~0.1	ing/kg	<0.00001 /0		
24	۲	phenanthrene	004 504 5	05.04.0		0.9	mg/kg		0.9	mg/kg	0.00009 %		
-	_	anthracene	201-581-5	85-01-8									
25			204-371-1	120-12-7		0.21	mg/kg		0.21	mg/kg	0.000021 %		
26	0	fluoranthene				1.5	mg/kg		1.5	mg/kg	0.00015 %		
			205-912-4	206-44-0									
27	۲	pyrene	204-927-3	129-00-0		1.9	mg/kg		1.9	mg/kg	0.00019 %		
		benzo[a]anthracen	le	.20 00 0		4.0			4.0		0.00010.0/		
20		601-033-00-9	200-280-6	56-55-3		1.3	тід/кд		1.3	тід/кд	0.00013 %		
29		chrysene				1.5	mg/kg		1.5	mg/kg	0.00015 %		
\vdash		601-048-00-0	205-923-4	218-01-9	-								
30		601-034-00-4	205-911-9	205-99-2	-	2	mg/kg		2	mg/kg	0.0002 %		
24		benzo[k]fluoranthe	ne		\square	0.00			0.00		0.000000.0/		
31		601-036-00-5	205-916-6	207-08-9		0.63	mg/kg		0.63	тg/кg	0.000063 %		
32		benzo[a]pyrene; be	enzo[def]chrysene			1.3	mg/kg		1.3	mg/kg	0.00013 %		
		601-032-00-3	200-028-5	50-32-8	-								
33	۵	Indeno[123-cd]pyre	205-893-2	193-39-5		1.1	mg/kg		1.1	mg/kg	0.00011 %		
24		dibenz[a,h]anthrac	ene			0.22	malka		0.22	malka	0.000033.8/		
34		601-041-00-2	200-181-8	53-70-3		0.55	iiig/kg		0.55	iiig/kg	0.000033 %		
35	0	benzo[ghi]perylene	205-883-8	191-24-2		0.99	mg/kg		0.99	mg/kg	0.000099 %		
36	4	vanadium { [•] diva pentoxide } 023-001-00-8	nadium pentaoxide	e; vanadium		16	mg/kg	1.785	28.563	mg/kg	0.00286 %		
37	0	monohydric pheno	ls			-0.1	ma/ka		-0.1	ma/ka	<0.00001.%		
				P1186	1	CU.1	ing/kg		<0.1	ing/kg	CO.00001 %		
1										Total:	0.064 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS08-18/11/2022-1.0

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 00101		Value		USCU
1	8	рН		PH		9.7 pH		9.7 pH	9.7 pH		
								Total:	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS08-18/11/2022-3.0

Sample details

Sample name:	LoW Code:	
WS08-18/11/2022-3.0	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 19% No Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 dolor		Value		USCU
1	9	pН		PH	_	8.3 pH		8.3 pH	8.3 pH		
								Total:	0%		

Key 0

- User supplied data
- Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS09-18/11/2022-0.1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
WS09-18/11/2022-0.1	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.1 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony {	<mark>ny trioxide</mark> } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tri 033-003-00-0	<mark>ioxide</mark>	1327-53-3		10	mg/kg	1.32	13.203	mg/kg	0.00132 %		
3	~	boron { <mark>diboron tric</mark> 005-008-00-8	xide; boric oxide } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	~	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.35	mg/kg	1.142	0.4	mg/kg	0.00004 %		
5	4	chromium in chrom <mark>chromium(III) oxide</mark>	nium(III) compound e (worst case) 215-160-9	Is {		20	mg/kg	1.462	29.231	mg/kg	0.00292 %		
6	4	chromium in chrom <mark>oxide</mark> } 024-001-00-0	hium(VI) compound	Is { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper c 029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>iide</mark> } 1317-39-1		25	mg/kg	1.126	28.147	mg/kg	0.00281 %		
8	4	lead { ^e lead comp specified elsewhere 082-001-00-6	oounds with the ex e in this Annex (wo	ception of those orst case) }	1	49	mg/kg		49	mg/kg	0.0049 %		
9	~	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of me iric sulphide and th innex }	ercury with the lose specified	1	0.05	mg/kg		0.05	mg/kg	0.000005 %		
10	4	nickel { nickel(II) ca 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		15	mg/kg	2.022	30.336	mg/kg	0.00303 %		
11	~	selenium { nickel se 028-031-00-5	elenate } 239-125-2	15060-62-5		0.51	mg/kg	2.554	1.302	mg/kg	0.00013 %		
12	4	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2		68	mg/kg	1.245	84.641	mg/kg	0.00846 %		
13	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#		Determinand EU CLP index EC Number CAS Number		P Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used	
		number	EC Number	CAS Number	С							MC	
14		benzene	Į	4		<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	-								
16	۵	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		nH			+								
19	۲		1	PH		8.2	рН		8.2	рН	8.2 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		0.41	mg/kg		0.41	mg/kg	0.000041 %		
21		acenaphthylene				0.2	ma/ka		0.2	ma/ka	0 00002 %		
			205-917-1	208-96-8	1								
22	۵	acenaphthene	201-469-6	83-32-9		1.2	mg/kg		1.2	mg/kg	0.00012 %		
00	8	fluorene				1.0			4.0		0.00010.0/		
23			201-695-5	86-73-7		1.2	mg/kg		1.2	mg/kg	0.00012 %		
24	0	phenanthrene				12	mg/kg		12	ma/ka	0.0012 %		
			201-581-5	85-01-8									
25	۵	anthracene	204-371-1	120-12-7		3.1	mg/kg		3.1	mg/kg	0.00031 %		
26		fluoranthene	F0.01.1	.20 .2 .		45			45	malle	0.0015.0/		
20			205-912-4	206-44-0		15	mg/kg		15	тту/ку	0.0015 %		
27	0	pyrene	604.007.0	400.00.0		13	mg/kg		13	mg/kg	0.0013 %		
		bonzo[a]anthracon	204-927-3	129-00-0	-								
28		601-033-00-9	200-280-6	56-55-3		7.4	mg/kg		7.4	mg/kg	0.00074 %		
		chrysene				7.5			7.5	4	0.00075.0/		
29		601-048-00-0	205-923-4	218-01-9		7.5	mg/kg		7.5	mg/kg	0.00075 %		
30		benzo[b]fluoranthe	ne			9.5	ma/ka		9.5	ma/ka	0.00095 %		
Ľ		601-034-00-4	205-911-9	205-99-2	1		33			59			
31		benzo[k]fluoranthe	ne 205-916-6	207-08-9	-	3.6	mg/kg		3.6	mg/kg	0.00036 %		
20		benzo[a]pyrene; be	enzo[def]chrysene		+	0.7			0.7	m o //	0.00087.0/		
32		601-032-00-3	200-028-5	50-32-8		8.7	mg/kg		8.7	mg/kg	0.00087 %		
33	0	indeno[123-cd]pyre	ene			5.3	mg/kg		5.3	mg/kg	0.00053 %		
		-l'h F- h l th	205-893-2	193-39-5	-								
34		601-041-00-2	ene 200-181-8	53-70-3		1	mg/kg		1	mg/kg	0.0001 %		
-	e	benzo[ghi]bervlene	200 101.0	20100	+				. =				
35			205-883-8	191-24-2		4.7	mg/kg		4.7	mg/kg	0.00047 %		
36	4	vanadium { ^e diva pentoxide } 023-001-00-8	nadium pentaoxide	e; vanadium		20	mg/kg	1.785	35.704	mg/kg	0.00357 %		
27	0	monohydric pheno	ls	1 -	\top	-0.1	meller		-0.1	ma/les	-0.00001.0/		4.00
31		- ·		P1186	1	<0.1	тg/кg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
									Total:	0.0382 %			

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS09-18/11/2022-0.5

Sample details

Sample name:	LoW Code:	
WS09-18/11/2022-0.5	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.5 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Mo	isture content: 0% No Moisture Correction applied (MC)												
#		Determinand			User entered data		Conv.	Compound conc.	Classification	Applied	Conc. Not		
		EU CLP index number	EC Number	CAS Number	CLP				Value	MC	USEU		
								Total:	0%				

Key

User supplied data

Classification of sample: WS09-18/11/2022-1.0

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS09-18/11/2022-1.0	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 16% No Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 dolor				0300
1	8	рН		PH		7.8 pH		7.8 pH	7.8 pH		
		х	~	~		•		Total:	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS10-18/11/2022-0.15

Sample details

Sample name:	LoW Code:	
WS10-18/11/2022-0.15	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.15 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
23%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 23% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	*	antimony { antimor 051-005-00-X	hy trioxide }	1309-64-4		9.3	mg/kg	1.197	11.133	mg/kg	0.00111 %		
2	*	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		26	mg/kg	1.32	34.328	mg/kg	0.00343 %		
3	4	boron {	<mark>xide; boric oxide</mark> } 215-125-8	1303-86-2		0.59	mg/kg	3.22	1.9	mg/kg	0.00019 %		
4	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.84	mg/kg	1.142	0.96	mg/kg	0.000096 %		
5	4	chromium in chrom chromium(III) oxide	hium(III) compound (worst case) }	ls { •		29	mg/kg	1.462	42.385	mg/kg	0.00424 %		
6	*	chromium in chrom oxide 024-001-00-0	hium(VI) compound	ds { chromium(VI)	_	<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %	Γ	<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>- 10 001 0 oxide; copper (I) o</mark> 215-270-7	<mark>(ide</mark> }		150	mg/kg	1.126	168.883	mg/kg	0.0169 %		
8	*	lead { [•] lead comp specified elsewher 082-001-00-6	oounds with the ex e in this Annex (wo	ception of those orst case) }	1	380	mg/kg		380	mg/kg	0.038 %		
9	\$	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	c compounds of m pric sulphide and th nnex }	ercury with the nose specified	1	0.27	mg/kg		0.27	mg/kg	0.000027 %		
10	4	nickel { nickel(II) ca 028-010-00-0	a <mark>rbonate</mark> } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	-	59	mg/kg	2.022	119.322	mg/kg	0.0119 %		
11	\$	selenium {	elenate } 239-125-2	15060-62-5		2	mg/kg	2.554	5.108	mg/kg	0.000511 %		
12	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		670	mg/kg	1.245	833.958	mg/kg	0.0834 %		
13	8	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

www.hazwasteonline.com

#		ELLCI P index	Determinand	CAS Number	P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number	LC Number	CAS Number	Ы							ž	
14		benzene				~0.001	ma/ka		<0.001	ma/ka	<0.000001 %		
		601-020-00-8	200-753-7	71-43-2		<0.001	iiig/kg			iiig/kg	<0.0000001 //		
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
16	۲	etnyibenzene	202-840-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xvlene	202-043-4	100-41-4									
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	nH											
19	۲	1 Y		PH	{	6.9	рН		6.9	рН	6.9 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		0.28	mg/kg		0.28	mg/kg	0.000028 %		
24		acenaphthylene		1		0.17			0.47		0.000017.0/		
21			205-917-1	208-96-8		0.17	mg/kg		0.17	тід/кд	0.000017 %		
22	۵	acenaphthene	201-469-6	83-32-9		0.52	mg/kg		0.52	mg/kg	0.000052 %		
		fluorene	201-403-0	03-32-3	$\left \right $								
23			201-695-5	86-73-7		0.46	mg/kg		0.46	mg/kg	0.000046 %		
24	8	phenanthrene				4 1	ma/ka		4 1	ma/ka	0.00041 %		
27			201-581-5	85-01-8			iiig/itg			iiig/kg	0.00041 /0		
25	0	anthracene	204-371-1	120-12-7		1.2	mg/kg		1.2	mg/kg	0.00012 %		
		fluoranthene	2010/11	120 12 1		7.0			7.0		0.00070.0/		
20			205-912-4	206-44-0		7.9	mg/kg		7.9	тід/кд	0.00079 %		
27	۲	pyrene				6.9	mg/kg		6.9	mg/kg	0.00069 %		
<u> </u>			204-927-3	129-00-0									
28		benzolajanthracen	100 280 6	56 55 3		3.9	mg/kg		3.9	mg/kg	0.00039 %		
-		chrysene	200-200-0	50-55-5	-								
29		601-048-00-0	205-923-4	218-01-9		4.2	mg/kg		4.2	mg/kg	0.00042 %		
30		benzo[b]fluoranthe	ne	1	1	5.2	ma/ka		5.2	ma/ka	0 00052 %		
		601-034-00-4	205-911-9	205-99-2	1	0.2	ing/kg		0.2	iiig/kg	0.00002 /0		
31		benzo[k]fluoranthe	ne			2	mg/kg		2	mg/kg	0.0002 %		
<u> </u>		601-036-00-5	205-916-6	207-08-9	-								
32		ben∠o[a]pyrene; be	200-028-5	50-32-8	-	4.5	mg/kg		4.5	mg/kg	0.00045 %		
		indeno[123-cd]pyre	ene	00-02-0	\vdash								
33	-		205-893-2	193-39-5		3	mg/kg		3	mg/kg	0.0003 %		
34		dibenz[a,h]anthrac	ene			0.5	mg/kg		0.5	mg/kg	0.00005 %		
		601-041-00-2	200-181-8	53-70-3									
35	۵	penzolguijberviene	205-883-8	191-24-2	{	2.7	mg/kg		2.7	mg/kg	0.00027 %		
	æ		205-883-8 191-24-2		\vdash								
36	*	vanadium { diva pentoxide 	nadium pentaoxid	e; vanadium		63	mg/kg	1.785	112.467	mg/kg	0.0112 %		
		023-001-00-8	215-239-8	1314-62-1	-								
37	۵	monohydric pheno	IS	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1								Total:	0.177 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Russell Corbyn on 28 Feb 2023

Classification of sample: TP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
TP01	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.10 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
10%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 10% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used	
1	4	arsenic { arsenic tr	r <mark>ioxide</mark> }	4007.50.0		11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
2	4	boron { diboron tric	215-481-4 oxide; boric oxide }	1327-53-3		0.9	ma/ka	3.22	2 898	ma/ka	0.00029 %		
		005-008-00-8	215-125-8	1303-86-2		0.0	ing/kg	0.22		ing/kg	0.00020 //		
3	4	cadmium {	m oxide }			<0.2	ma/ka	1 142	<0.228	ma/ka	<0.0000228 %		<lod< th=""></lod<>
		048-002-00-0	215-146-2	1306-19-0		40.2	ing/kg			ing/itg	10.0000220 //		
4	4	<pre>chromium in chromium(III) compounds { chromium(III) oxide (worst case) }</pre>				33	mg/kg	1.462	48.231	mg/kg	0.00482 %		
	•	aannar (<mark>diaannar</mark>	215-160-9	1308-38-9	-							-	
5	44			1217 20 1		36	mg/kg	1.126	40.532	mg/kg	0.00405 %		
6	4	lead { [•] lead comp specified elsewher	pounds with the ex e in this Annex (wo	ception of those orst case) }	1	53	mg/kg		53	mg/kg	0.0053 %		
		082-001-00-6										-	
7	4	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }		1	<0.3	mg/kg		<0.3	mg/kg	<0.00003 %		<lod< th=""></lod<>	
		080-002-00-6			-							_	
8	*	nickel { nickel(II) ca 028-010-00-0	arbonate 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		19	mg/kg	2.022	38.426	mg/kg	0.00384 %		
~	æ	selenium { nickel s	elenate }			.1		0 554	-0.554		-0.0002EE %		
э		028-031-00-5	239-125-2	15060-62-5	1	<1	ту/кд	2.004	<2.554	nig/kg	<0.000255 %		<lod< th=""></lod<>
10	4	zinc { zinc oxide }				87	ma/ka	1 245	108 29	ma/ka	0.0108 %		
10		030-013-00-7	215-222-5	1314-13-2	1	07	iiig/kg	1.243	100.29	iiig/kg	0.0100 /8		
11	۰	TPH (C6 to C40) p	etroleum group			623	ma/ka		623	ma/ka	0.0623 %		
				TPH		020	iiig/itg		020	ing/kg	0.0020 /0		
12		benzene 601-020-00-8	200-753-7	71-43-2		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
13		toluene			<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>	
11	8	ethylbenzene	203-625-9	108-88-3	\vdash	~5	ma/ka		~5	ma/ka	<0.0005 %	-	
14		601-023-00-4	202-849-4	100-41-4		<0	шу/кд		<0	mg/kg	<0.0005 %		<lud< td=""></lud<>

Page 40 of 59

HazWasteOnline[™]

Report created by Russell Corbyn on 28 Feb 2023

#		Determinand			Note	User entered data		Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
		xylene											
15		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
16		naphthalene			Γ	19	ma/ka		19	ma/ka	0.00019 %		
		601-052-00-2	202-049-5	91-20-3		1.5	iiig/itg		1.5	iiig/kg	0.00013 /0		
17		acenaphthylene				0.35	ma/ka		0.35	ma/ka	0.000035 %		
			205-917-1	208-96-8									
18		acenaphthene				4.5	mg/kg		45 m	ma/ka	0.00045 %		
			201-469-6	83-32-9									
19	0	fluorene				3.5	mg/kg		3.5	mg/kg	0.00035 %		
			201-695-5	86-73-7									
20	0	phenanthrene				24	mg/kg		24	mg/kg	0.0024 %		
			201-581-5	85-01-8								_	
21	Θ	anthracene				6.4	mg/kg		6.4	mg/kg	0.00064 %		
			204-371-1	120-12-7	-							_	
22	0	fluoranthene				32	mg/kg		32	mg/kg	0.0032 %		
			205-912-4	206-44-0	-								
23	8	pyrene	bo 4 007 0	400.00.0	_	28	mg/kg		28	mg/kg	0.0028 %		
		204-927-3 129-00-0			-							-	
24		benzo[a]anthracene			_	16	mg/kg		16	mg/kg	0.0016 %		
		601-033-00-9 200-280-6 56-55-3			-							-	
25		cnrysene			-	10	mg/kg		10	mg/kg	0.001 %		
		benzolbifuoranthene			-							-	
26		601 034 00 4 005 011 0 005 00 2			-	17	mg/kg		17	mg/kg	0.0017 %		
		benzo[k]fluoranthe	200-911-9	200-99-2	-								
27		601-036-00-5 205-916-6 207-08-9			-	4.4	mg/kg		4.4	mg/kg	0.00044 %		
		benzo[a]pyrene: b	enzoldeflchrvsene	<u> </u>									
28		601-032-00-3 200-028-5 50-32-8		-	13	mg/kg		13	mg/kg	0.0013 %			
		indeno[123-cd]pvr	ene										
29		205-893-2 193-39-5			-	5.5	mg/ĸg		5.5	mg/ĸg	0.00055 %		
20		dibenz[a,h]anthrac	cene		\uparrow	10			4.0		0.00010.00		
30		601-041-00-2 200-181-8 53-70-3			-1	1.3	mg/kg		1.3	mg/kg	0.00013 %		
31	8	monohydric pheno	ols	· ·		-0.1	malka		-0.1	ma/ka	<0.00001.9/		
				P1186		<0.1	mg/kg		<0.1	ing/kg	CO.00001 %		
										Total	0 112 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0623%)

Classification of sample: TP01[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
TP01[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
8.7%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 8.7% No Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		7.2 mg/kg	1.32	9.506 mg/kg	0.000951 %		
2	*	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		1.6 mg/kg	3.22	5.152 mg/kg	0.000515 %		
3	4	cadmium {		<0.2 mg/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< td=""></lod<>
4	*	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } b15.160.9 1308-38-9	_	19 mg/kg	1.462	27.77 mg/kg	0.00278 %		
5	4	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1		20 mg/kg	1.126	22.518 mg/kg	0.00225 %		
6	¥	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	24 mg/kg		24 mg/kg	0.0024 %		
7	¥	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }	1	<0.3 mg/kg		<0.3 mg/kg	<0.00003 %		<lod< th=""></lod<>
8	*	nickel { nickel(II) carbonate } 028-010-00-0 222-068-2 [1] 3333-67-3 [1] 240-408-8 [2] 16337-84-1 [2] 265-748-4 [3] 65405-96-1 [3] 235-715-9 [4] 12607-70-4 [4]		15 mg/kg	2.022	30.336 mg/kg	0.00303 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
10	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		82 mg/kg	1.245	102.067 mg/kg	0.0102 %		
11	8	TPH (C6 to C40) petroleum group		120 mg/kg		120 mg/kg	0.012 %		
12		benzene 601-020-00-8 200-753-7 71-43-2		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
13		toluene 601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14	8	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>

Page 42 of 59

HazWasteOnline[™]

Report created by Russell Corbyn on 28 Feb 2023

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		User entered data		User entered data		User entered data Cor		Conv. Factor	.v. cor Compound conc.		Classification value	MC Applied	Conc. Not Used
15		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>						
16		naphthalene 601-052-00-2	202-049-5	91-20-3		0.28	mg/kg		0.28	mg/kg	0.000028 %								
17	0	acenaphthylene	205-917-1	208-96-8		0.1	mg/kg		0.1	mg/kg	0.00001 %								
18	0	acenaphthene	201-469-6	83-32-9		0.63	mg/kg		0.63	mg/kg	0.000063 %								
19	0	fluorene	201-695-5	86-73-7		0.29	mg/kg		0.29	mg/kg	0.000029 %								
20	8	phenanthrene	201-581-5	85-01-8		3.2	mg/kg		3.2	mg/kg	0.00032 %								
21	۵	anthracene	204-371-1	120-12-7		0.9	mg/kg		0.9	mg/kg	0.00009 %								
22	۲	fluoranthene	205-912-4	206-44-0		9.4	mg/kg		9.4	mg/kg	0.00094 %								
23	0	pyrene	204-927-3	129-00-0		8.8	mg/kg		8.8	mg/kg	0.00088 %								
24		benzo[a]anthracer 601-033-00-9	1e 200-280-6	56-55-3		4.8	mg/kg		4.8	mg/kg	0.00048 %								
25		chrysene 601-048-00-0	205-923-4	218-01-9		3.3	mg/kg		3.3	mg/kg	0.00033 %								
26		benzo[b]fluoranthe 601-034-00-4	ene 205-911-9	205-99-2		5.3	mg/kg		5.3	mg/kg	0.00053 %								
27		benzo[k]fluoranthe	ene	07.08.0		1.3	mg/kg		1.3	mg/kg	0.00013 %								
28		benzo[a]pyrene; b	enzo[def]chrysene	F0.00.0		4	mg/kg		4	mg/kg	0.0004 %								
29	0	indeno[123-cd]pyro	ene	pu-32-0		1.8	mg/kg		1.8	mg/kg	0.00018 %	\square							
30		dibenz[a,h]anthrac	205-893-2 cene	193-39-5	╞	0.44	mg/kg		0.44	mg/kg	0.000044 %								
31	۰	601-041-00-2 monohydric pheno	200-181-8 ols	53-70-3	+	<0.1	ma/ka		<01	mg/kg	<0.00001 %								
				P1186		NO.1	iiig/ky		V 0.1	Total	0.0409 %								

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.012%)

HazWasteOnline[™] Report created by Russell Corbyn on 28 Feb 2023

Classification of sample: TP02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
TP02	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.4% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	r Compound conc.		Classification value		Conc. Not Used
1	4	arsenic { arsenic ti	rioxide }	1007 50 0		11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
2	4	boron { diboron tric	215-481-4 oxide; boric oxide }	1327-53-3		0.6	mg/kg	3.22	1.932	mg/kg	0.000193 %		
3	4	cadmium { cadmiu	m oxide }	1305-60-2		<0.2	mg/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
4	4	chromium in chron chromium(III) oxide	215-146-2 nium(III) compound e (worst case) } 215-160-9	1306-19-0 is { •		26	mg/kg	1.462	38	mg/kg	0.0038 %		
5	4	copper { dicopper 029-002-00-X	oxide; copper (I) ov 215-270-7	<mark>(ide</mark> } 1317-39-1		34	mg/kg	1.126	38.28	mg/kg	0.00383 %		
6	4	lead { lead com specified elsewher 082-001-00-6	pounds with the ex re in this Annex (wo	ception of those prst case) }	1	41	mg/kg		41	mg/kg	0.0041 %		
7	4	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }		1	<0.3	mg/kg		<0.3	mg/kg	<0.00003 %		<lod< td=""></lod<>	
	æ	nickel { nickel(II) c	arbonate }										
8	~	028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		19	mg/kg	2.022	38.426	mg/kg	0.00384 %		
9	4	selenium {	elenate }			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	-	028-031-00-5	239-125-2	15060-62-5	-							_	
10	44	(30-013-00-7 215-222-5 1314-13-2			84	mg/kg	1.245	104.556	mg/kg	0.0105 %			
11	0	TPH (C6 to C40) petroleum group				577	mg/kg		577	mg/kg	0.0577 %	Ì	
12		benzene 601-020-00-8	200-753-7	TPH 71-43-2		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
13		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
14		ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>

Page 44 of 59

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			ľ							2	
15		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
16		naphthalene				0.74	ma/ka		0.74	ma/ka	0.000074 %		
		601-052-00-2	202-049-5	91-20-3									
17	٥	acenaphthylene				0.41	mg/kg		0.41	mg/kg	0.000041 %		
			205-917-1	208-96-8									
18	۲	acenaphthene	201-469-6	83-32-9		0.75	mg/kg		0.75	mg/kg	0.000075 %		
19	۲	fluorene				0.85	mg/kg		0.85	mg/kg	0.000085 %	1	
			201-695-5	86-73-7	-								
20	•	phenanthrene	201-581-5	85-01-8	-	5.8	mg/kg		5.8	mg/kg	0.00058 %		
21	0	anthracene	004.074.4	400.40.7		1.7	mg/kg		1.7	mg/kg	0.00017 %		
-		fluoranthana	204-371-1	120-12-7	-							-	
22	0	fluorantnene	b05 012 4	boc 11 0		9.5	mg/kg		9.5	mg/kg	0.00095 %		
		Dyropo	205-912-4	206-44-0	+								
23		pyrene	201-027-3	129-00-0	-	8.6	mg/kg		8.6	mg/kg	0.00086 %		
		benzolalanthracer	1204 027 0	123 00 0	+								
24		benzolajantinacene 601-033-00-9 200-280-6 56-55-3				5.4	mg/kg		5.4	mg/kg	0.00054 %		
		chrvsene	F00 200 0		+								
25		601-048-00-0	205-923-4	218-01-9	-	3.7	mg/kg		3.7	mg/kg	0.00037 %		
26		benzo[b]fluoranthe	ene		1	6.0	malles		6.0	malle	0,00062,9/		
26		601-034-00-4	205-911-9	205-99-2		6.2	mg/kg		6.2	mg/kg	0.00062 %		
27		benzo[k]fluoranthe	ene			1.4	ma/ka		1 /	ma/ka	0 00014 %		
21		601-036-00-5	205-916-6	207-08-9		1.4	iiig/kg		1.4	iiig/kg	0.00014 //		
28		benzo[a]pyrene; b	enzo[def]chrysene)		4.9	ma/ka		4.9	ma/ka	0.00049 %		
		601-032-00-3	200-028-5	50-32-8						ing/kg			
29		indeno[123-cd]pyr	ene			2.2	ma/ka		2.2	ma/ka	0.00022 %		
			205-893-2	193-39-5									
30		dibenz[a,h]anthracene			0.53	mg/kg		0.53	mg/kg	0.000053 %			
	601-041-00-2 200-181-8 53-70-3		-										
31	phenol 604-001-00-2 203-632-7 108-95-2			-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>	
32	32 monohydric phenols	bls			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
				P1186		mg/kg		<0.1					
1										Iotal:	0.0931 %	1	

v-

rey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0577%)

Classification of sample: TP02[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
TP02[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.5%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.5% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	ioxide }			7.7	mg/kg	1.32	10.167	mg/kg	0.00102 %		
		033-003-00-0	215-481-4	1327-53-3	\vdash								
2	•••	005-008-00-8	215-125-8	1303-86-2		2.1	mg/kg	3.22	6.762	mg/kg	0.000676 %		
2	8	cadmium { cadmiu	<mark>m oxide</mark> }			<0.2	ma/ka	1 1 1 2	<0.228	ma/ka	<0.0000228.%		
5		048-002-00-0	215-146-2	1306-19-0		<0.2	iiig/kg	1.142	<0.220	шу/ку	<0.0000228 /8		<lod< td=""></lod<>
4	4	<pre>chromium in chromium(III) compounds {</pre>				23	mg/kg	1.462	33.616	mg/kg	0.00336 %		
		<i>.</i>	215-160-9	1308-38-9	-							-	
5	4	copper { dicopper {	oxide; copper (I) ox	(Ide }		28	mg/kg	1.126	31.525	mg/kg	0.00315 %		
6	\$	lead { Icad com specified elsewher	pounds with the ex e in this Annex (wo	ception of those prst case) }	1	30	mg/kg		30	mg/kg	0.003 %		
7	\$	mercury { inorgani exception of mercu elsewhere in this A	c compounds of mo uric sulphide and th Annex }	ercury with the lose specified	1	<0.3	mg/kg		<0.3	mg/kg	<0.00003 %		<lod< td=""></lod<>
	-	nickel { nickel(II) c	arbonate }		+								
8	*	028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		17	mg/kg	2.022	34.381	mg/kg	0.00344 %		
9	ē.	selenium {	elenate }			<1	ma/ka	2 554	<2 554	ma/ka	<0.000255 %		<lod< td=""></lod<>
		028-031-00-5	239-125-2	15060-62-5	1							<u> </u>	
10	4	zinc { zinc oxide }	015 000 5	1214 12 2		75	mg/kg	1.245	93.354	mg/kg	0.00934 %		
		TPH (C6 to C40) p	etroleum aroup	1314-13-2	-							-	
11	0			ТРН		514	mg/kg		514	mg/kg	0.0514 %		
12		benzene 601-020-00-8	200-753-7	71-43-2	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
13		toluene 601-021-00-3	203-625-9	108-88-3	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
14	8	ethylbenzene 601-023-00-4	202-849-4	100-41-4	_	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>

HazWasteOnline[™]

Report created by Russell Corbyn on 28 Feb 2023

#		EU CLP index E	eterminand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15		xylene 601-022-00-9 202- 203- 203- 215-	422-2 [1] 396-5 [2] 576-3 [3] 535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5 mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
16		naphthalene	040 5	01 20 2		0.63 mg/kg		0.63	mg/kg	0.000063 %		
17	0	acenaphthylene	049-5	91-20-3		0.19 mg/kg		0.19	mg/kg	0.000019 %		
18	۵	acenaphthene	917-1	208-96-8		0.72 mg/kg		0.72	mg/kg	0.000072 %		
19	0	fluorene	469-6	83-32-9		0.59 mg/kg		0.59	mg/kg	0.000059 %		
20	0	201- phenanthrene	695-5	86-73-7		5.5 mg/kg		5.5	mg/kg	0.00055 %		
21	0	201- anthracene	581-5	85-01-8		1.5 mg/kg		1.5	mg/kg	0.00015 %		
22	۵	204- fluoranthene	371-1	120-12-7		8.9 mg/kg		8.9	mg/kg	0.00089 %		
23	0	205- pyrene	912-4	206-44-0		8 mg/kg		8	mg/kg	0.0008 %		
24		204- benzo[a]anthracene	.927-3	129-00-0		5 mg/kg		5	mg/kg	0.0005 %		
25		chrysene	000 4	po-55-3		3.4 mg/kg		3.4	mg/kg	0.00034 %		
26		benzo[b]fluoranthene	044.0	218-01-9		5.7 mg/kg		5.7	mg/kg	0.00057 %		
27		benzo[k]fluoranthene	911-9	200-99-2		1.1 mg/kg		1.1	mg/kg	0.00011 %		
28		b01-036-00-5 205- benzo[a]pyrene; benzo[def]chrysene	207-08-9		4.3 mg/kg		4.3	mg/kg	0.00043 %		
29	0	601-032-00-3 200- indeno[123-cd]pyrene	028-5	50-32-8		2 mg/kg		2	mg/ka	0.0002 %		
30		205- dibenz[a,h]anthracene	893-2	193-39-5		0.46 ma/ka		0.46		0 000046 %		
	601-041-00-2 200-181-8 53-70-3		1			0.10			\mid			
31		604-001-00-2 203-	632-7	108-95-2		<1 mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
32	8	monohydric phenols		P1186		<0.1 mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				ų					Total:	0.0826 %	Γ	

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration <LOD Below limit of detection ND Not detected CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0514%)

HazWasteOnline[™]

Report created by Russell Corbyn on 28 Feb 2023

Classification of sample: TP04

Sample details

Sample name:	LoW Code:	
TP04	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20 m	Entry:	17 05 03 * (Soil and stones containing hazardous substances)
Moisture content:		
11%		
(no correction)		

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.143%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.143%)

Determinands

Moisture content: 11% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered d	ntered data		Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number	iovide \		Ĕ							~	
1	**	033-003-00-0	215-481-4	1327-53-3		16 m	ig/kg	1.32	21.125	mg/kg	0.00211 %		
2	4	boron { diboron tric	xide; boric oxide } 215-125-8	1303-86-2		0.6 m	ng/kg	3.22	1.932	mg/kg	0.000193 %		
3	4	cadmium { cadmiu 048-002-00-0	m oxide } 215-146-2	1306-19-0		<0.2 m	ng/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
4	4	chromium in chrom chromium(III) oxide	hium(III) compound e (worst case) }	s { •		32 m	ng/kg	1.462	46.77	mg/kg	0.00468 %		
5	4	copper { dicopper (029-002-00-X	215-160-9 <mark>oxide; copper (I) ox</mark> 215-270-7	1308-38-9 ide } 1317-39-1		39 m	ng/kg	1.126	43.91	mg/kg	0.00439 %		
6	4	lead { lead comp specified elsewher 082-001-00-6	pounds with the exe e in this Annex (wo	ception of those orst case) }	1	74 m	ng/kg		74	mg/kg	0.0074 %		
7	4	mercury { inorgani exception of mercu elsewhere in this A 080-002-00-6	c compounds of me pric sulphide and th nnex }	ose specified	1	<0.3 m	ng/kg		<0.3	mg/kg	<0.00003 %		<lod< th=""></lod<>

#			Determinand		Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	G							MC	
	4	nickel { <mark>nickel(II) ca</mark>	arbonate }										
8		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		21	mg/kg	2.022	42.471	mg/kg	0.00425 %		
9	4	selenium {	elenate }			<1	ma/ka	2.554	<2.554	ma/ka	<0.000255 %		<lod< th=""></lod<>
		028-031-00-5	239-125-2	15060-62-5									
10	44	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2		89	mg/kg	1.245	110.78	mg/kg	0.0111 %		
11	۲	TPH (C6 to C40) p	etroleum group			1425	mg/kg		1425	mg/kg	0.143 %		
		banzana		ГРН	-								
12		601-020-00-8	200-753-7	71-43-2	-	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
12		toluene				-5	malka			malka	-0.000E %		
13		601-021-00-3	203-625-9	108-88-3		<0	mg/kg		<0	mg/kg	<0.0005 %		<lod< td=""></lod<>
14	0	ethylbenzene				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
15		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
16		naphthalene				3.3	mg/kg		3.3	mg/kg	0.00033 %		
		601-052-00-2	202-049-5	91-20-3	-								
17	۲	acenaphthylene	205-017-1	208-96-8		0.65	mg/kg		0.65	mg/kg	0.000065 %		
		acenaphthene	200-017-1	200-30-0	-								
18	-		201-469-6	83-32-9		1.9	mg/kg		1.9	mg/kg	0.00019 %		
19	8	fluorene	1			2.3	mg/kg		2.3	mg/kg	0.00023 %		
	_	nhenanthrene	201-695-5	86-73-7	-								
20		prichantinene	201-581-5	85-01-8	-	15	mg/kg		15	mg/kg	0.0015 %		
21	0	anthracene	004 271 1	120 12 7		4.4	mg/kg		4.4	mg/kg	0.00044 %		
22	0	fluoranthene	204-371-1	120-12-1		20	ma/ka		20	ma/ka	0.002 %		
			205-912-4	206-44-0									
23	Θ	pyrene	204-927-3	129-00-0		19	mg/kg		19	mg/kg	0.0019 %		
24		benzo[a]anthracen	e			11	ma/ka		11	ma/ka	0.0011.94		
24		601-033-00-9	200-280-6	56-55-3	1		ing/kg			iiig/kg	0.0011 /8		
25		chrysene	205 022 /	b18 01 0		10	mg/kg		10	mg/kg	0.001 %		
-		benzo[b]fluoranthe	ne	F 10-01-3							0.000005.00	\square	
26		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27		benzo[k]fluoranthe	ne	007.00.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-036-00-5	205-916-6	207-08-9	-								
28		601-032-00-3	200-028-5	50-32-8	-	12	mg/kg		12	mg/kg	0.0012 %		
29		indeno[123-cd]pyre	ene			49	ma/ka		4 9	ma/ka	0 00049 %		
23			205-893-2	193-39-5	1	4.3	ing/kg		ч.J	iiig/kg	0.00070 /0		
30	dibenz[a,h]anthracene				1.4	mg/kg		1.4	mg/kg	0.00014 %			
24	0	benzo[ghi]perylene	200-101-0	p3-70-3							0.0006.01	\square	
31			205-883-8	191-24-2	1	б	ing/kg		0	тід/кд	0.0006 %		
32		phenol 604-001-00-2	203-632-7	108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
33		monohydric pheno	ls		\vdash	<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< th=""></lod<>
				P1186	1								
										Total:	0.19 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Lig. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.143%)

HazWasteOnline[™] Report created by Russell Corbyn on 28 Feb 2023

Classification of sample: TP05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
TP05	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.10 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.8%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.8% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data F		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr	<mark>'ioxide</mark> }			11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
		033-003-00-0	215-481-4	1327-53-3									
2	4	boron { diboron tric	<pre>pxide; boric oxide }</pre>			0.6	mg/kg	3.22	1.932	mg/kg	0.000193 %		
		005-008-00-8	215-125-8	1303-86-2	_								
3	4	cadmium { cadmiu	m oxide }	4000 40 0		<0.2	mg/kg	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
		048-002-00-0 215-146-2 1306-19-0		-							-		
4	*	<pre>chromium in chromium(III) compounds { chromium(III) oxide (worst case) } </pre>				30 mg/kg 1.4	1.462	43.847	mg/kg	0.00438 %			
			215-160-9	1308-38-9									
5	4	copper { dicopper }	oxide; copper (I) ov 215-270-7	<mark>(ide</mark> } 1317-39-1		30	mg/kg	1.126	33.777	mg/kg	0.00338 %		
6	4	lead { <pre>lead com specified elsewher 082-001-00-6</pre>	pounds with the ex e in this Annex (wo	ception of those orst case) }	1	59	mg/kg		59	mg/kg	0.0059 %		
7	*	<pre>sole control of the second secon</pre>			1	<0.3	mg/kg		<0.3	mg/kg	<0.00003 %		<lod< td=""></lod<>
		nickel { nickel(II) c	arbonate }		┢								
8	4	028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	_	18	mg/kg	2.022	36.403	mg/kg	0.00364 %		
a	8	selenium { nickel s	elenate }	1		-1	ma/ka	2 554	~2 554	ma/ka	<0.000255 %		
		028-031-00-5	239-125-2	15060-62-5			iiig/ikg	2.004	~2.004	ingrig	30.000200 /0		
10	4	zinc { zinc oxide }	215-222-5	1314-13-2		89	mg/kg	1.245	110.78	mg/kg	0.0111 %		
		TPH (C6 to C40) p	etroleum aroup										
11		. , , , , ,		TPH		606	mg/kg		606	mg/kg	0.0606 %		
12		benzene 601-020-00-8	200-753-7	71-43-2		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
13		toluene	, ,			<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	\vdash							-	
14	8	601-023-00-4	202-849-4	100-41-4		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>

www.hazwasteonline.com

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number CAS Number	CLF					MC	
		xylene							
15		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
16		naphthalene		1.5 mg/kg		1.5 mg/kg	0.00015 %		
		202-049-3 91-20-3	-						
17	۲	205-917-1 208-96-8	$\left\{ \right.$	0.35 mg/kg		0.35 mg/kg	0.000035 %		
-	_	acenanhthene	+						
18	۳	201-469-6 83-32-9	-	1.6 mg/kg		1.6 mg/kg	0.00016 %		
		fluorene							
19		201-695-5 86-73-7	-	1.2 mg/kg		1.2 mg/kg	0.00012 %		
		phenanthrene	1				0.0011.0/		
20		201-581-5 85-01-8	-	11 mg/кg		11 mg/кg	0.0011 %		
24		anthracene		2.5 malla		2.5	0.00035.0/		
21		204-371-1 120-12-7		3.5 Шу/ку		3.5 mg/kg	0.00035 %		
22	۲	fluoranthene		22 ma/ka		22 ma/ka	0.0022 %		
		205-912-4 206-44-0		22 mg/kg		22 mg/kg	0.0022 /8		
23	۲	pyrene		20 ma/ka		20 ma/ka	0.002 %		
_		204-927-3 129-00-0					0.002 /0		
24		benzo[a]anthracene		11 ma/ka		11 mg/kg	0.0011 %		
		601-033-00-9 200-280-6 56-55-3							
25		chrysene		10 mg/kg		10 mg/kg	0.001 %		
		601-048-00-0 205-923-4 218-01-9	-						
26		benzo[b]fluoranthene	4	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-99-2	-						
27			-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[a]pyrepe: benzo[def]cbrygepe	+						
28		601-032-00-3 200-028-5 50-32-8	-	12 mg/kg		12 mg/kg	0.0012 %		
		indeno[123-cd]pvrene							
29		205-893-2 193-39-5	-	6 mg/kg		6 mg/kg	0.0006 %		
		dibenz[a,h]anthracene		1.0 //		1.0 //	0.00010.00		
30		601-041-00-2 200-181-8 53-70-3	1	1.2 mg/kg		1.2 mg/kg	0.00012 %		
21	benzo[ghi]perylene			6.4 ma/ka		6.4 ma/ka	0.00064.94		
	205-883-8 191-24-2			0.4 mg/kg		0.4 mg/kg	0.00004 %		
32	32 phenol			<1 ma/ka		<1 ma/ka	<0.0001 %		<lod< td=""></lod<>
		604-001-00-2 203-632-7 108-95-2	1	, ing/kg					.200
33	monohydric phenols			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
			1			Total:	0.104 %		L

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0606%)

Report created by Russell Corbyn on 28 Feb 2023

Appendix A: Classifier defined and non GB MCL determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015

Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• pH (CAS Number: PH) Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

^e phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4: H302 , Aquatic Acute 1: H400 , Aquatic Chronic 1: H410

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

e divanadium pentaoxide; vanadium pentoxide (EC Number: 215-239-8, CAS Number: 1314-62-1)

GB MCL index number: 023-001-00-8

Description/Comments:

Additional Hazard Statement(s): Carc. 1B; H350 , Acute Tox. 3; H301 , Acute Tox. 2; H330

Reason for additional Hazards Statement(s):

20 Sep 2022 - Carc. 1B; H350 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be Carc. 1B; H350. The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 3; H301 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 3; H301". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 2; H330 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 2; H330". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341 , Acute Tox. 3; H331 , Acute Tox. 3; H311 , Acute Tox. 3; H301 , STOT RE 2; H373 , Skin Corr. 1B; H314 , Skin Corr. 1B; H314 >= 3%, Skin Irrit. 2; H315 1 £ conc. < 3%, Eye Irrit. 2; H319 1 £ conc. < 3%, Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings

Report created by Russell Corbyn on 28 Feb 2023

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigment

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

There is an insufficient quantity of Chromium VI available to stoichiometrically form Chromate Compounds, as such the next most likely worse-case species has been selected for assessment. The concentration of Chromium VI is noted to be less than the detection limit of the analytical test. The selection of "lead compounds with the exception of those specified elsewhere in this Annex (worst case)" is considered as applicable in this instance.

mercury {inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex}

Reasonable case CLP selection as fulminate not likely to be present. Inorganic Mercury is more likely to be present. Dichloride is highly soluble and is unlikely to be present

nickel {nickel(II) carbonate}

Reasonable case CLP entry as halides, hexacyanoferrate, and sulfate are very soluble, thiocyanate is not likely to be present from industrial uses and is also soluble, insufficient Hexavalent Chromium to form the chromate species. Nickel Carbonate is largely insoluble and present in ceramics and potteries that may be present in Made Ground particularly.

selenium {nickel selenate}

Reasonable case CLP compound unless Se is present in sufficient quantities to stoichiometrically form the Ni-Se compounds.

zinc {zinc oxide}

There is an insufficient quantity of Chromium VI available to stoichiometrically form Chromate Compounds, as such the next most likely worse-case species has been selected for assessment. The concentration of Chromium VI is noted to be less than the detection limit of the analytical test. Most likely species of Zinc in soil is as Zinc Oxide or Silicate. Sulfates and Chlorides are very soluble and unlikely to be present. Sulfides are unlikely to be present in this sample. Silicate is not an option. Zinc Oxide is selected as the most likely species.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide]

vanadium {divanadium pentaoxide; vanadium pentoxide}

worst case CLP species

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2023.51.5529.10230 (20 Feb 2023) HazWasteOnline Database: 2023.51.5529.10230 (20 Feb 2023)

This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT Lawrence House | 6 Meadowbank Way | Nottingham | NG16 3SB 01773 535555 | design@hspconsulting.com | www.hspconsulting.com