

LE-020

King James' School Expansion

for

Farrell and Clark Architects

Flood Risk Assessment and Surface Water Management Report

East Parade Chambers 10-12 East Parade Leeds LS1 2BH

(Tel): 0113 532 6988
(E-mail): info@ccs-consulting.co.uk
(Web): www.ccs-consulting.co.uk

Prepared by:	M. Symonds
Authorised by:	J Boswell
Issued by:	J Boswell
Rev:	В
Date:	22 nd October 2020

Rev:	Revised for:	Issue date:	Prepared by:	Authorised by:
-	Original Issue	01.05.20	MS	JB
В	Revised following LLFA comments	22.10.20	MS	JB

This report has been prepared for the private and confidential use of the client 'King James' School', and cannot be reproduced in whole or in part or relied upon by any third party for any use whatsoever without the express written authorisation of CCS Consulting Limited. If any third party whatsoever comes into possession of this report, they rely on it at their own risk and CCS Consulting Limited accepts no duty or responsibility (including in negligence) to any such third party.

Contents

1.	Introduction	3
2.	National / Local Policies and Water Management Guidance	4
3.	Site Setting and Description	5
4.	Potential Sources of Existing Flooding	7
5.	Probability of Flooding	8
6.	Flood Risk and Vulnerability	10
7.	The Sequential Test and Exception Test	13
8.	Surface Water Management Principles	14
9.	Surface Water Run-Off Destination	16
10.	SuDS Feasibility	17
11.	Development Greenfield Run-Off Rate and Volumes	20
12.	Pre-Development Surface Water Run-Off Rates and Volume	22
13.	Below Ground Drainage Network and Surface Water Management Calculation	24
14.	Maintenance Requirements	27
15.	Surface Water Design Exceedance	28
16.	Water Quality / Pollutants	29
17.	Development Management and Construction Phase	29
18.	Conclusion / Summary	30

Appendices

Appendix A	-	Site Location Plan
Appendix B	-	Topographical Survey
Appendix C	-	Proposed Site Plan
Appendix D	-	British Geological Survey Data
Appendix E	-	Existing Drainage Details
Appendix F	-	Greenfield Run-Off Rates and Volume Calculations
Appendix G	-	Pre- Development Run-Off Rates and Volume Calculations
Appendix H	-	Surface Water Management Layout and Details
Appendix I	-	Surface Water Network / Management Calculations

1. Introduction

CCS Consulting Ltd have prepared a Flood Risk Assessment and Surface Water Management report, for the expansion of King James' School, Huddersfield, HD4 6SG.

This report will assess the current flood risks to the development site and will demonstrate that the surface water run-off rate and volume for the new development site is managed so it adheres to current regulations, and local authority requirements.

In particular, this flood risk statement and surface water management (SuDS) report has been prepared to the requirements of the:

- National Planning Policy Framework (NPPF) 2019 Paragraphs 149-150 and 155-165;
- National Planning Practice Guidance (NPPG);
- Principles of Sustainable drainage systems (SuDS) set out by DEFRA (2011);
- Ciria SuDS Manual C753 (2015);
- Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015);
- Kirklees Council Surface Water Management Plan (February 2011);
- Kirklees Council Flood Risk Management Strategy (February 2013);
- Kirklees Local Plan Strategy and Policies (Adopted 27 February 2019).

Kirklees Council Lead Local Flood Authority (LLFA) need to be satisfied that the design and drainage principles of the proposed development will address the risk of flooding to the development site, and that the proposals will not in turn increase the risk of flooding to neighbouring land and property.

This flood risk assessment and surface water management report has therefore been prepared to identify and evaluate the various possible sources of flood risk to which the proposed site might be subjected to; to identify any mitigation, protection or compensation measures deemed necessary or feasible; ad to manage the surface water so it sustainable, and does not increase the probability of flooding within, or near the site.

2. National / Local Policies and Water Management Guidance

2.1. National Planning Policy Framework (NPPF) and National Planning Practice Guidance (NPPG)

The National Planning Policy Framework sets out the Government's planning policies for England and how these should be applied. It provides a framework within which locally prepared plans for housing and other development can be produced. This document is used to form this flood risk statement, with particular attention to Paragraphs 149 to 154 Planning for Climate Change, and Paragraphs 155 to 165 Planning for Flood Risk.

NPPG, Paragraph 030, outlines that the objectives of this FRA is to establish whether a proposed development is likely to be affected by current or future flooding from any source; whether it will increase flood risk elsewhere; whether the measures proposed to deal with these effects and risks are appropriate; whether the evidence for the local planning authority to apply (if necessary) the Sequential Test; and whether the development will be safe and pass the Exception Test, if applicable.

NPPG, Paragraph 051 states that sustainable drainage systems (SuDS) are designed to control surface water run off close to where it falls and mimic natural drainage as closely as possible, where they provide opportunities to reduce the causes and impacts of flooding; remove pollutants from urban run-off at source; and to combine water management with green space with benefits for amenity, recreation and wildlife

Further to this NPPG, Paragraph 080 states that the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable which (in order) are into the ground (infiltration); to a surface water body; to a surface water sewer, highway drain, or another drainage system; to a combined sewer.

2.2. Flood and Water Management Act

The Flood and Water Management Act takes forward some of the proposals from three previous strategy documents published by the UK Government - Future Water (2008), Making Space for Water (2008) and the UK Government's response to the Sir Michael Pitt's Review of the summer 2007 floods. In doing so it gives the EA a strategic overview role for flood risk and gives local authorities responsibility for preparing and putting in place strategies for managing flood risk from groundwater, surface water and ordinary watercourses in their areas.

2.3. Kirklees Local Plan Strategy and Policies (Adopted 27 February 2019)

Kirklees Local Plan Strategy and Policies - Policy LP28 states that: 'The presumption is that Sustainable Drainage Systems (SuDS) will be used to assist in achieving the following on each site:

- a. for proposals on greenfield sites, typical greenfield run-off rates should not be exceeded.
- b. for proposals on brownfield sites there should be a minimum 30% reduction in surface water run-off where previous positive surface water connections from the site can be proven. New connections will be subject to at least greenfield restrictions;
- c. No negative impact on local water quality and improvements in water quality where practicable;
- d. Consider whether proposed open spaces and green infrastructure within sites can contribute to the sustainable drainage of the site.

Local conditions including the existence of critical drainage areas may require a lower run-off rate to be agreed to reflect volume control, local surface water risks, water course capacity and flood risk further downstream. There will be a general presumption against pumping surface water. It must also be demonstrated that the surface water management solution is designed to meet requirements over the lifetime of the development

including evidence that management and maintenance arrangements have been secured to cover that period. This includes ensuring proposals to store water meet national standards and latest best practice. Flow paths accommodating water from outside the site or due to an exceedance event should be designed to avoid buildings and curtilages. Development will only be permitted if it can be demonstrated that the water supply and waste water infrastructure required is available or can be coordinated to meet the demand generated by the new development'.

3. Site Setting and Description

3.1. Development Site Location

As detailed in Appendix A, The existing school is in a rural / residential area of Almondsbury, which is approximately 3km south east of Huddersfield town centre and train station, with the full address being King James School, St Helens Gate, Almondsbury, Huddersfield, and the nearest postcode being HD4 6SG.

The areas of the school to be expanded is to the west of the existing school building and access road, with the co-ordinates of the development site being Easting: 417085, Northing: 414775.

3.2. Existing Use and Topography

As detailed on the topographical survey in Appendix B, the area of the school to be developed currently consists of two temporary buildings to the north and east; hard-standing 'tarmac' car parking arras to the south, and grassed / overgrown vegetation for the remaining areas.

In terms of topography, the areas of the school being developed has a general fall from west to east with the high point along the western boundary being approximately 127.49m AOD, and the low-point along the eastern boundary being approximately 123.10m AOD.

3.3. Proposed Development

The proposed development plans are shown in Appendix C, with a full description of the development site being stated by the Architect.

In brief, and in relation to this flood risk assessment and surface water management report, the proposal is to expand the school by demolishing the temporary buildings and to build a new a new 2-storey permeant school building with 9 class rooms, and leaning resource areas. The external areas (previously occupied by parking bays and temporary building) will be formed with new permeable / impermeable car park and pedestrian areas.

3.4. Ground Conditions

Ground conditions can be sourced from the British Geological Survey (BGS) website, which identifies the ground at the site to have no superficial deposits, and bedrock layer of sandstone.

The BGS data also shows public record borehole logs, with the nearest logs being approximately 500m north of the school at Southfield Road and Somerset Road. The borehole records are shown in Appendix D, which show that the ground at each borehole location to the north predominantly consists of silty clay.

A full Phase 2 ground investigation and infiltration tests have been undertaken on the site. These confirm that the underlying ground conditions generally comprise made ground consisting of gravelly clay, over mudstone and sandstone. Infiltration tests have confirmed that these have very low to no infiltration value, and therefore it is confirmed that discharging the surface water run-off from the new development area of the school, to ground, is not feasible.

3.5. Waterbodies

There are no known waterbodies near to the school site, with the nearest main waterbodies being Rushfield Dike approximately 150m to the south east, and Fenay Beck approximately 650m to the east.

3.6. Existing Drainage

As detailed on the utilities survey drawing in Appendix E, there is an existing 100mm diameter surface water drainage network running below the access road to the east of the development area, and existing foul / combined water systems running between the existing school buildings to the east of the development area.

The utilities plan shows a pipe connection from one of the temporary buildings to the surface water network, therefore it is deemed that the surface water run-off from this building will discharge to the existing surface water drainage system.

It is also assumed that due to the topography of the ground (falling from west to east) the surface water runoff from the existing car parking areas and other temporary building will also discharge onto the access road, and into the existing surface water drainage system.

3.7. Development Areas

The overall area of the school that is to be developed is approximately 1127m² / 0.113 ha.

The surface water run-off from the temporary buildings and car parking areas is believed to discharge to the existing surface water network, which equates to approximately $370m^2 / 0.037$ ha.

For the purpose of the pre-development surface water run-off rates and volume calculations, the area is to be 0.037 ha, and for the purpose of the greenfield run-off rates and volume calculations, the urban factor of the development area is deemed to be 0.33 (0.037 / 0.113).

The post development area will consist of the new 2-storey building and permeable / impermeable car park and pedestrian areas. For the purpose of the post development surface water run-off rates and volume calculations, all of the development area is to be taken into consideration. Therefore, the post development surface water management area is based on an area of **0.113 ha**.

In summary:

Overall Development Area	-	0.113 ha
Pre-Development SW Run-Off Area	-	0.037 ha
Greenfield Urban Factor	-	0.33
Post Development SW Run-Off Area	-	0.113 ha

4. Potential Sources of Existing Flooding

The potential sources of exiting flooding for the site, that are to be assessed, are as follows:

4.1. Fluvial Flooding

Fluvial flooding is resulted from watercourses / rivers surcharging and flooding the surrounding areas.

4.2. Pluvial Flooding

'Pluvial' flooding is that which results from rainfall generated overland flow before the run-off enters any watercourse, drain or sewer. It is more often linked to high intensity rainfall events (typically more than 30mm per hour). However, it can also result from lower intensity rainfall or melting snow where the ground is saturated, frozen, developed or has low permeability. This results in overland flow and ponding in depressions in the topography. In urban areas 'pluvial' flows are likely to follow the routes of highways and other surface connectivity to low spots where flooding can occur. In some cases, it can deviate from this route into adjacent developments via dropped kerbs (either for access to driveways or disability access).

4.3. Groundwater Flooding

Groundwater flooding is caused by the emergence of water from sub-surface permeable strata. Fluctuations in the groundwater table can cause flooding should the table rise above the existing ground level. Groundwater flooding events tend to have long durations, lasting days or weeks.

4.4. Flooding from Drains and Sewers

Flooding from drains and sewers is caused when the capacity of the drains and sewers is exceeded, and will result in flooding from the manholes.

4.5. Canals, Reservoirs and Other Artificial Sources

Flooding from canals, reservoirs and artificial sources is caused when the capacity of the sources is exceeded, or if there is an infrastructure failure.

5. Probability of Flooding

5.1. Fluvial Flooding

The Environment Agency (EA) fluvial flood map shown in Figure 1, indicates that the development site is within Flood Zone 1 – low probability (Land having a less than 1 in 1,000 annual probability of river or sea flooding).

Figure 1 – EA Flood Zone Map

The EA fluvial flood map shown in Figure 2, indicates that the development site has a less than very low probability of flooding rivers or the sea. Therefore, the probability of fluvial flooding is deemed to be low.

High Medium Low Very low 🕀 Location you selected

Figure 2 – EA Fluvial Flood Map

5.2. Pluvial Flooding

The EA pluvial flood map shown in Figure 3, indicates that there is better than a very low flood probability from surface water / pluvial source for the area of the school being developed site, with a low probability of pluvial flooding to the north east within the access road, and a medium probability around the existing buildings to the east. As no pluvial flooding is shown within the development area, the probability of surface water/ pluvial

LE-020- King James' School Expansion - Flood Risk Assessment and SW Management Report

flooding is deemed to be low.

High Medium Low Very low Cocation you selected

Figure 3 – EA Pluvial Flood Map

5.3. Ground Water Flooding

The BGS data, and the Phase 2 Ground Investigation, identify the ground to predominantly consist of silty clay over sandstone. Clay and sandstone is to have little or no percolation value, and there ground water is unlikely to be conveyed through these strata's to surface. Therefore, as the ground is likely to be impermeable, the probability of ground water flooding is deemed to be low.

5.4. Flooding from Drains and Sewers

The nearest drains / sewers to the area of the school being developed are within the access road and between the buildings to the east. The cover and invert levels of the existing drainage networks are lower than the proposed development levels, and therefore if any flooding form the existing network were to occur, it will flow away from the area being development. The probability of flooding from drains and sewers is therefore deemed to be low.

5.5. Canals, Reservoirs and Other Artificial Sources

There are no canals, reservoirs or other artificial water sources in direct vicinity or at a higher level to the development site, and therefore the probability of flooding from any of these sources is deemed to be low.

6. Flood Risk and Vulnerability

The NPPG Paragraphs 065 to 067 sets out the flood risk for a site by assessing the flood zones, flood risk vulnerability classification, and flood risk vulnerability and flood zone 'compatibility'.

6.1. Flood Zones

NPPG Paragraph 065, Table 1 indicates that the flood zones are:

Flood Zones	
Flood Zone	Definition
Zone 1 Low Probability	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the Flood Map – all land outside Zones 2 and 3)
Zone 2 Medium Probability	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the Flood Map)
Zone 3a High Probability	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding. (Land shown in dark blue on the Flood Map)

The EA flood map data has identified that the development site is in Flood Zone 1, which has a low probability of flooding

6.2. Flood Risk Vulnerability Classification

NPPG Paragraph 066, Table 2 stated the flood risk vulnerability classifications as:

Flood Risk Vulnerability Classification

Essential Infrastructure

Essential transport infrastructure (including mass evacuation routes) which should cross the area at risk; Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood; Wind turbines.

Highly Vulnerable

Police and ambulance stations; fire stations and command centers; telecommunications installations required to be operational during flooding; Emergency dispersal points; Basement dwellings; Caravans, mobile homes and park homes intended for permanent residential use; Installations requiring hazardous substances consent.

More Vulnerable

Hospitals; Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels; Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels; Non–residential uses for health services, nurseries and **educational establishments**; Landfill* and sites used for waste management facilities for hazardous waste; Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.

Less Vulnerable

Police, ambulance and fire stations which are not required to be operational during flooding; Buildings used for shops; financial, professional and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distribution; non-residential institutions not included in the 'More Vulnerable' class; and assembly and leisure; Land and buildings used for agriculture and forestry; Waste treatment (except landfill* and hazardous waste facilities); Minerals working and processing (except for sand and gravel working); Water treatment works which do not need to remain operational during times of flood.

Water-Compatible Development

Flood control infrastructure; Water transmission infrastructure and pumping stations; Sewage transmission infrastructure and pumping stations; Sand and gravel working; Docks, marinas and wharves; Navigation facilities.

This development is classed as a 'More Vulnerable' as the development is to be used for an educational establishment.

6.3. Flood Risk Vulnerability and Flood Zone 'Compatibility'

NPPG Paragraph 067 Table 3, gives guidance on flood risk vulnerability compared with flood zone, to determine the compatibility.

Flood Risk Vulnerability and Flood Zone 'Compatibility'					
Flood Zones	Flood Risk Vulnerability Classification				
	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
Zone 1	\checkmark	\checkmark	✓	\checkmark	\checkmark
Zone 2	\checkmark	Exception Test required	\checkmark	\checkmark	\checkmark
Zone 3a †	† Exception Test required	x	Exception Test required	\checkmark	\checkmark
Zone 3b*	* Exception Test required	x	X	x	√ *

In accordance with Table 3 of the NPPF if the site is in Flood Zone 1, is classed as 'More Vulnerable', the

development is appropriate.

7. The Sequential Test and Exception Test

7.1. Sequential and Exception Test Guidance

Paragraph 101 of the NPPG states that: The aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower probability of flooding. The Strategic Flood Risk Assessment will provide the basis for applying this test. A sequential approach should be used in areas known to be at risk from any form of flooding.

Paragraph 102 of the NPPG states that: *If, following application of the Sequential Test, it is not possible, consistent with wider sustainability objectives, for the development to be located in zones with a lower probability of flooding, the Exception Test can be applied if appropriate. For the Exception Test to be passed:*

- it must be demonstrated that the development provides wider sustainability benefits to the community that outweigh flood risk, informed by a Strategic Flood Risk Assessment where one has been prepared; and
- a site-specific flood risk assessment must demonstrate that the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.

7.2. Sequential and Exception Test Requirement for Development

The development site has passed the sequential and exception test as it is in Flood Zone 1, and in accordance with NPPF guidelines is classed as 'More Vulnerable', and therefore is an appropriate development.

8. Surface Water Management Principles

The surface water for the development site is to be managed so that it adheres to the current regulations, and local authority requirements, as detailed in previous sections of this report.

8.1. Run-Off Destination

Surface water run-off is to discharge to one or more of the following in the order of priority shown:

- Discharge into the ground (infiltration);
- Discharge to a surface water body;
- Discharge to a surface water sewer, highway drain or other drain;
- Discharge to combined sewer.

8.2. The Management Train

A concept fundamental to implementing a successful SuDS scheme is the management train. This is a sequence of SuDS components that serve to reduce run-off rates and volumes and reduce pollution. The hierarchy of techniques that are to be used for the surface water management of the development are:

- Prevention Prevention of run-off by good site design and reduction of impermeable areas;
- Source Control Dealing with water where and when it falls (e.g. infiltration techniques);
- Site Control Management of water in the local area (e.g. swales, detention basins);
- Regional Control Management of run-off from sites (e.g. balancing ponds, wetlands).

8.3. Design Principles

The design principles for the surface water management of the development will be to:

- Ensure that people, property and critical infrastructure are protected from flooding;
- Ensure that the development does not increase flood risk off site;
- Ensure that SuDS can be economically maintained for the development.

8.4. Peak Surface Water Flow

Kirklees Local Plan Strategy and Policies - Policy LP28 states that:

'for proposals on greenfield sites, typical greenfield run-off rates should not be exceeded., and for proposals on brownfield sites there should be a minimum 30% reduction in surface water run-off where previous positive surface water connections from the site can be proven. New connections will be subject to at least greenfield restrictions'.

The area of the school being developed is deemed to be a brownfield site, and therefore, based to the guidance, the surface water will be restricted to as low as possible with the aim to achieve the equivalent greenfield rates, and a maximum rate of 30% betterment of the pre-development rates.

8.5. Volume Control

The aim is to ensure that the run-off volume from the developed site for the 1 in 100-year 6-hour rainfall does not exceed the pre-development run-off volume for the same event.

Should infiltration methods not be suitable, and it is not possible to achieve pre-development runoff volume,

LE-020- King James' School Expansion - Flood Risk Assessment and SW Management Report

then it will be demonstrated that the increased volume will not increase flood risk on or off site.

8.6. Flood Risk

The drainage system will be designed so that, unless an area is designed to hold and/or convey water, flooding does not occur on any part of the site for a 1 in 30-year rainfall event.

The drainage system will also be designed so that, unless an area is designed to hold and/or convey water, flooding does not occur during a 1 in 100-year rainfall event in any part of a building (including a basement) or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.

The design of the site will ensure that flows resulting from rainfall more than a 1 in 100-year rainfall event are managed in exceedance routes that avoid risk to people and property both on and off site.

8.7. Pollution

The SuDS design for the development site will ensure that the quality of any receiving water body is not adversely affected and preferably enhanced in accordance with Ciria SuDS Manual C753, Chapter 4.

8.8. Designing for Exceedance

The development site design will be such that when SuDS features fail or are exceeded, exceedance flows do not cause flooding of properties on or off site. This will be achieved by designing suitable ground exceedance or flood pathways, and run-off will be completely contained within the drainage system (including areas designed to hold or convey water) for all events up to a 1 in 30-year event. The design of the site ensures that flows from rainfall more than a 1 in 100-year rainfall event are managed in exceedance routes that avoid risk to people and property both on and off site.

9. Surface Water Run-Off Destination

The destination of the surface water run-off from the post development site has been assessed against the prioritisation set by the Approved Document H (2010). The feasibility of the surface water run-off to the priority receptors are as follows:

Run-Off Destination	Feasible	Description
Discharge to Ground	No	The BGS data identifies that the ground at the varied borehole locations (within 500m of development) predominantly consists of silty clay, with a bedrock layer of sandstone. Phase 2 Ground Investigations and infiltration tests have confirmed that the ground is underlain with Clay and Sandstone which have a very low to no infiltration value, and therefore it is deemed that discharging the surface water run-off from the new development
		area of the school to ground is not feasible.
Discharge to Surface Water Body	No	There are no known waterbodies near the area of the school being development, and therefore discharge to a waterbody is not a feasible destination.
Discharge to Surface Water Sewer	Yes	As surface water cannot discharge to ground due to the presence of silty clay and sandstone, and there are no known water bodies near the development area of the school, the only alternative will be to discharge the surface water from the post development to the existing surface water drainage network to the east. This surface water discharge destination will 'mimic' the pre- development surface water discharge destination.
Discharge to Highway Drain or Other	No	There are no known highway or other drains near the area of the school being development, and therefore discharge to a waterbody is not a feasible destination.
Discharge to Combined Water Sewer	No	There are no known combined sewers near the area of the school being development, and therefore discharge to a waterbody is not a feasible destination.

10. SuDS Feasibility

To reduce the surface water run-off to the greenfield rate or 50% betterment of the pre-development rate, SuDS methods are to be introduced to the post development design.

SuDS methods as per the Sustainable Drainage System (SuDS) hierarchy, and the Non-Statutory Technical Standards for Sustainable Drainage Systems – March 2015, that can be used are detailed below:

	Description	Setting	Required area
Green roofs	A planted soil layer is constructed on the roof of a building to create a living surface. Water is stored in the soil layer and absorbed by vegetation.	Building	Building integrated.
Rainwater	Rainwater is collected from the roof of a building or from other paved surfaces and stored in an overground or underground tank for treatment and reuse locally. Water could be used for toilet flushing and irrigation.	Building	Water storage (underground or above ground).
Soakaway	A soakaway is designed to allow water to quickly soak into permeable layers of soil. Constructed like a dry well, an underground pit is dug filled with gravel or rubble. Water can be piped to a soakaway where it will be stored and allowed to gradually seep into the ground.	Open space	Dependant on runoff volumes and soils.
Filter Strip	Filter strips are grassed or planted areas that runoff is allowed to run across to promote infiltration and cleansing.	open space	Minimum length 5 metres.
Permeable paving	Paving which allows water to soak through. Can be in the form of paving blocks with gaps between solid blocks or porous paving where water filters through the block itself. Water can be stored in the sub-base beneath or allowed to infiltrate into ground below.	space	Can typically drain double its area.
Bioretention area	A vegetated area with gravel and sand layers below designed to channel, filter and cleanse water vertically. Water can infiltrate into the ground below or drain to a perforated pipe and be conveyed elsewhere. Bioretention systems can be integrated with tree-pits or gardens.	Street/open space	Typically surface area is 5-10% of drained area with storage below.

	Description	Setting	Required area	
Swale	Swales are vegetated shallow depressions designed to convey and filter water. These can be 'wet' where water gathers above the surface, or 'dry' where water gathers in a gravel layer beneath. Can be lined or unlined to allow infiltration.	Street/open space	Account for width to allow safe maintenancce typically 2-3 metres wide.	
Hardscape storage	Hardscape water features can be used to store run-off above ground within a constructed container. Storage features can be integrated into public realm areas with a more urban character.	Open space	Could be above or below ground and sized to storage need.	
Pond / Basin	Ponds can be used to store and treat water. 'Wet' ponds have a constant body of water and run-off is additional, while 'dry' ponds are empty during periods without rainfall. Ponds can be designed to allow infiltration into the ground or to store water for a period of time before discharge.	Open space	Dependant on runoff volumes and soils.	
Wetland	Wetlands are shallow vegetated water bodies with a varying water level. Specially selected plant species are used to filter water. Water flows horizontally and is gradually treated before being discharged. Wetlands can be integrated with a natural or hardscape environment.	Open space	Typically 5-15% of drainage area to provide good treatment.	
Underground storage	Water can be stored in tanks, gravel or plastic crates beneath the ground to provide attenuation.	open space	Dependant on runoff volumes and soils.	

The feasibility of the above SuDS methods for the post developed site are summarised in the table below:

SuDS Method	Feasible Use	Description
Green Roof	No	The proposed school building is not structurally designed for green roofs, and therefore this is not a feasible SuDS method.
Rainwater Harvesting	Yes	The water demand for the new school building will not match the potential yield of water. Therefore, due to the low demand the use of rainwater harvesting for use in the building is not feasible. However, water butts could be installed at some rainwater pipe locations to the rear of the building, where the water will be stored and used for future irrigation of the landscape / garden areas.
Soakaway	No	As stated in Section 9, the BGS data identifies that the ground at the varied borehole locations (within 500m of development) predominantly consists of silty clay, with a bedrock layer of sandstone. A Phase 2 Ground Investigation and infiltration tests have

		been undertaken on the site which have confirmed that the ground is underlain with Clay and Sandstone which have a very low to no infiltration value, and therefore it is deemed that the use of soakaways to discharge the surface water to ground is not feasible.
Filter Strips	No	There are limited areas in the areas of the school being developed for a filter drain, due to the area consisting of the building and permeable / impermeable external areas only. Therefore, due to the lack of suitable soft landscape areas, there will the use of this SuDS method is not feasible.
Permeable Paving	Yes	There is potential to have a permeable paving for the external development areas. The permeable paving will NOT be used as a soakaway, but will convey the water to the main network (via ap perforated pipe in the sub-base), reduce the surface water discharge rate and volume, attenuate restricted surface water, and act as a pollutant control.
Bioretention Area	No	There are limited areas in the areas of the school being developed for a filter drain, due to the area consisting of the building and permeable / impermeable external areas only. Therefore, due to the lack of suitable soft landscape areas, there will the use of this SuDS method is not feasible.
Swale	No	There are limited areas in the areas of the school being developed for a filter drain, due to the area consisting of the building and permeable / impermeable external areas only. Therefore, due to the lack of suitable soft landscape areas, there will the use of this SuDS method is not feasible.
Pond / Basin	No	There are limited areas in the areas of the school being developed for a filter drain, due to the area consisting of the building and permeable / impermeable external areas only. Therefore, due to the lack of suitable soft landscape areas, there will the use of this SuDS method is not feasible.
Underground Storage	Yes	The surface water run-off from the development site will be restricted to as low as possible with the aim to achieve the equivalent greenfield run-off rate, or at least a 30% betterment of the pre-development rates. Therefore, there will be a requirement to have underground storage for storm events up to 1 in 30-year; and to suitable sized so that the volume of water during the 1 in 100-year storm event is kept a minimum at surface level, where it can be contained on site.

11. Development Greenfield Run-Off Rate and Volumes

To minimise the surface water run-off from the new development areas of the school, it is preferred that the post development surface water run-off be restricted to the equivalent greenfield run-off rates and volume.

11.1. Greenfield Run-Off Rate

The Flood Estimation Handbook (FEH) is often used for the calculation of the greenfield run-off rate, however, relevant documents state that to calculate the greenfield run-off rates on small catchments less than 25km², the IH 124 QBAR equation (and the equation for the instantaneous time to peak for the unit hydrograph approach) is to be used.

The IH method is based on the Flood Studies Report (FSR) approach and is developed for use on catchments less than 25km². It yields the Mean Annual Maximum Flood (QBAR). This reference also recommends the use Ciria C753 Table 24.2 to generate Growth Factors. These are used to convert QBAR to different return periods for different regions in the UK.

The input variables to establish QBAR are:

Return Period (years)	Results based on a range of return periods and the specified RP;
Area	Catchment Area (ha) which is adjusted to km2 for use in the equation;
SAAR	Average annual rainfall in mm (1941-1970) from FSR figure II.3.1;
Soil	Procedure Volume 3. Soil classes 1 to 5 have Soil Index values of 0.15, 0.3, 0.4, 0.45 and 0.5 respectively;
Urban	Proportion of area urbanised expressed as a decimal;
Region Number	Region number of the catchment based on FSR Figure I.2.4.

QBAR(I/s)

The output variables to establish QBAR are calculated using the following formula (equation yields m³/s):

- QBAR
- 0.00108 x AREA^{0.89} x SAAR^{1.17} x SOIL^{2.17} =

The IH 124 Variables (taken from FSR) that are specific to this site are as follows:

Area	=	50.00 ha
SAAR	=	948
Soil	=	0.300
Urban Factor	=	0.33
Region Number	=	10

Based on these variables, and the calculation results provided by the MicroDrainage computer software (Appendix F), the QBAR for a 50.00ha catchment area is:

QBAR 218.8 l/s =

This figure is for the catchment area of 50.00 ha, and is to be reduced to reflect the surface water run-off

LE-020- King James' School Expansion - Flood Risk Assessment and SW Management Report

area (0.113 ha) of the development site. Therefore, the QBAR (greenfield run-off) for development area has been calculated to be:

QBAR = <u>0.49 l/s (4.38 l/s/ha)</u>

Ciria C753 Table 24.2 identifies the growth factors for each of the storm events, based on the known QBAR figure. The growth factors from the table vary depending on the site location. In this case hydrometric area (Region Number) is 10.

Based on the figures shown in the table, the growth factors and the existing greenfield run-off rates for each of the storm events for the development areas of the site are as follows:

Storm Event	QBAR	Growth Factor (C753 Table 24.2)	Greenfield Run-off Rate
Q ₁	0.49 l/s	0.87	0.43 l/s
Q ₃₀	0.49 l/s	1.70	0.83 l/s
Q ₁₀₀	0.49 l/s	2.08	1.01 l/s

11.2. Greenfield Run-Off Volume

The greenfield run-off volume for the 100-year, 6-hour storm event has also been calculated in the MicroDrainage software using the data from the Flood Estimation Handbook (FEH), with the results shown in Appendix E.

The FEH data and variables used to calculate the greenfield run-off volume at the development site locations are as follows:

14500

Site Location	=	GB 417200 414500 SE 17200
C (1km)	=	-0.026
D1 (1km)	=	0.397
D2(1km)	=	0.421
D3 (1km)	=	0.308
E (1km)	=	0.308
F (1km)	=	2.388
Areal Reduction Factor	=	1.000
Area	=	365.500 ha
SAAR	=	884
CWI	=	121.412
SPR Host	=	21.940
URBTEXT	=	0.33

LE-020- King James' School Expansion - Flood Risk Assessment and SW Management Report

Based on these variables, and the calculation results provided by the MicroDrainage computer software (Appendix F), the greenfield run-off volume for the overall catchment area at the site location is:

Q100 (6-Hour) = 94,994.979m³

This figure is for the catchment area of 365.500 ha, and is to be reduced to reflect the surface water catchment area of the development site which is 0.113 ha. Therefore, the greenfield run-off volume for the development site area has been calculated to be:

Q100 (6-Hour) = <u>29.37m³ (259.90m³/ha)</u>

12. Pre-Development Surface Water Run-Off Rates and Volume

The pre-development surface water run-off rates and volumes are to be calculated, so that the post development rates are at least a 30% betterment.

The calculations to determine the pre-development surface water run-off rates and volumes are based on the pre-development surface water run-off area of 0.037 ha, and the data given by the Flood Estimation Handbook (FEH).

The pre-development surface water run-off rates and volume have also been simulated in the MicroDrainage software (Appendix G), where the variables used (FEH data) to calculate the surface water run-off rates and volumes are as follows:

Pre-Development Area	=	0.037 ha
Site Location	=	GB 417200 414500 SE 17200 14500
C (1km)	=	-0.026
D1 (1km)	=	0.397
D2(1km)	=	0.421
D3 (1km)	=	0.308
E (1km)	=	0.308
F (1km)	=	2.388
Time of Entry	=	5 minutes

Based on the above variables and computer software results, the pre-development surface water run-off rates will be as follows:

Q ₁	=	4.00 l/s (15-minute storm duration*)
Q30	=	13.40 l/s (15-minute storm duration*)
Q100	=	20.40 l/s (15-minute storm duration*)

*The critical storm duration for each of the return period is 15 minutes.

Based on the above variables for the surface water run-off from the pre-development impermeable area, it has been calculated that the pre-development surface water discharge volume for the pre-development site (at 6-hour storm events) are as follows:

LE-020– King James' School Expansion – Flood Risk Assessment and SW Management Report

 Q_{100} = 20.52m³ (360-minute storm duration)

13. Below Ground Drainage Network and Surface Water Management Calculation

13.1. Climate Change

The NPPF makes it a planning requirement to account for climate change in the proposed design. The recommended allowances are taken from the Environment Agency guidance (Table 2) summarised in Table 4 below.

Applies across all of England	Total change anticipated for the 2020's	Total change anticipated for the 2050's	Total change anticipated for the 2080's
Upper End	10%	20%	40%
Central	5%	10%	20%

The baseline year is 1961 to 1990. It is anticipated the life span of the proposed school building will be between 50 - 80 years, and therefore will fall at least into the 2080's and will have rainfall intensity increase of 40%. This increase in rainfall is to be taken into consideration for the surface water management of the proposed development site, to ensure that the probability of flooding remains low.

13.2. Surface Water Network Calculations

The FEH data and variables used to calculate the required below ground attenuation network and attenuation volumes at the development site are as follows:

SW Management Area	=	0.113 ha
Site Location	=	GB 417200 414500 SE 17200 14500
C (1km)	=	-0.026
D1 (1km)	=	0.397
D2(1km)	=	0.421
D3 (1km)	=	0.308
E (1km)	=	0.308
F (1km)	=	2.388
Time of Entry	=	5 minutes

13.3. Surface Water Drainage Network and Management

As shown on the below ground drainage layout drawing in Appendix H, the proposed surface water network will consist of 100mm and 300mm diameter pipes; 100mm perforated pipes, 450mm diameter silt trap chambers; a 1200mm diameter flow control chamber containing a hydro-brake; permeable paving systems and a below ground attenuation tank.

The surface water run-off from the roof areas will discharge to the main network via rainwater pipes (location to be confirmed); and the surface water run-off from the external areas will discharge to the main network via the permeable paving system.

The network will flow around the perimeter of the new building, where the surface water will discharge through the flow control chamber, prior to discharge / connection to the existing 100mm surface water drainage network. An attenuation tank is to be built within the network, where surface water will surcharge the network, once restricted, and fill the tank to prevent flooding.

13.4. Surface Water Run-Off Rate

For the surface water run-off from the development area of the school to be at the greenfield run-off rate, they are to be restricted to 0.43 l/s for the 1 in 1-year storm event; 0.83 l/s for the 1 in 30-year storm event, and 1.01 l/s for the 1 in 100-year storm event including 40% rainfall intensity increase (climate change).

For the surface water run-off to be a 30% betterment of the pre-development rates, the surface water run-off from the post development site is to be restricted to at least 2.80 l/s for the 1 in 1-year storm event (pre-development 4.00 l/s); 114.2 l/s for the 1 in 30-year storm event 9.38 l/s (pre-development 13.40 l/s); and 14.28 l/s for the 1 in 100-year storm event including 40% rainfall intensity increase (pre-development 20.40 l/s).

An assessment of the suitable flow control opening and subsequent surface water discharge also needs to assessed, where Ciria document C753 – The SuDS Manual states that: 'the flow controls / orifice design should be designed so that it has simplicity on operation, and has resistance to clogging, blocking or mechanical failure'.

For this development, and based on the guidance, greenfield rates and pre-development rates the suitable / minimum size of the flow control opening (hydro-brake opening) is deemed to be 75mm, with a design flow of **3.00 I/s**. The design flow of 3.00 I/s will restrict the surface water discharge at least a 30% betterment of the pre-development surface water run-off for the 1-year storm event.

As shown in the network / output calculation from the MicroDrainage computer software in Appendix I, if the hydro-brake opening is set at 75mm, the design flow at 3.00 l/s, with a design head of 1.500m, the maximum surface water run-off rates for each storm event will be as follows:

Strom	-	Rate	-	Critical Storm Event
Q ₁	-	2.30 l/s	-	15-minute winter storm duration
Q30	-	2.50 l/s	-	15-minute winter storm duration
Q ₁₀₀	-	3.00 l/s	-	240-minute winter storm duration

A summary of the post development surface water run-off rates compared to the greenfield and predevelopment rates are as follows:

Greenfield Rate to Post Development Rate

Strom	-	Greenfield	-	Post Dev	-	Difference
Q ₁	-	0.43 l/s	-	2.30 l/s	-	5.35 x Greenfield
Q30	-	0.83 l/s	-	2.50 l/s	-	3.01 x Greenfield
Q 100	-	1.01 l/s	-	3.00 l/s	-	2.97 x Greenfield

Pre-Development Rate to Post Development Rate

Strom	-	Pre-Dev	-	Post Dev	-	Difference
Q ₁	-	4.00 l/s	-	2.30 l/s	-	43% Betterment

LE-020- King James' School Expansion - Flood Risk Assessment and SW Management Report

Q30	-	13.40 l/s	-	2.50 l/s	-	81% Betterment

Q₁₀₀ - 20.40 l/s - 3.00 l/s - 85% Betterment

The surface water run-off rates are greater than the equivalent greenfield rates, however, are between 43% to 87% betterment of the pre-development run-off rates, and therefor adhere to the local authority minimum requirements, without increasing the flood risk to the existing drainage network and school site.

13.5. Surface Water Run-Off Volume

The surface water run-off volume for the post development site, when restricted to 3.00 l/s have also been calculated for 1 in 100-Year the 6-hour duration (Inc. 40% RII), and are detailed in the MircroDrainage calculations on Appendix I, the results of which are:

Q100 (6hour) - 95.42m³

A summary of the post development run-off volumes compared to the greenfield and pre-development volumes are as follows:

Greenfield Volume to Post Development Volume

Strom	-	Greenfield	-	Post Dev	-	Difference
Q100	-	29.37m ³	-	85.72m ³	-	2.92 x Greenfield

Pre-Development Volume to Post Development Volume

Strom	-	Pre-Dev	-	Post Dev	-	Difference
Q 100	-	20.52m ³	-	85.72m ³ -	-	4.18 x Pre-Development

The surface water run-off volume for the post development exceeds the greenfield and pre-development run-off volume, however as the rate at which the volume will discharge to the existing network will be reduced by 85% the additional volume will not result in flooding to the existing drainage network and school. Therefore, the surface water discharge volume is deemed to be acceptable.

13.6. Surface Water Attenuation Calculations

As stated above, if the post development run-off rates were restricted there will be a requirement for surface water attenuation to prevent flooding. The attenuation volume is achieved within the attenuation tank in the form of cellular units, and the sub-base of the permeable paving system, which have been designed / sized in accordance with:

Ciria SuDS Manual 2015, Paragraph 10.2.4 which states that: 'Exceedance flows (i.e. flows in excess of those for which the system is designed) should be managed safely in above-ground space such that risks to people and property are acceptable'. And PPS25 Practice Guidance Paragraph 5.51 which previously stated that: 'For events with a return-period in excess of 30 years, surface flooding of open spaces such as landscaped areas or car parks is acceptable for short periods, but the layout and landscaping of the site should aim to route water away from any vulnerable property, and avoid creating hazards to access and egress routes. No flooding of property should occur as a result of a one in 100-year storm event (including an appropriate allowance for climate change)'.

As detailed in the surface water management calculations in Appendix I, and demonstrated on the surface

water management layout in Appendix H, the attenuation for each SuDS feature ARE

Cellular Units			Permeable Paving		
Area	-	45.00m²	Area	-	470m²
Depth	-	0.80m	Sub-Base Depth	-	0.300m
Porosity	-	0.95	Porosity	-	0.30
Cellular Unit Volume	-	36.00m ³	Max. Paving Volume*	-	42.30m ³

*excluding gradient of permeable paving that reduces volume

The calculations (Appendix I) show that with the cellular units, no flooding occurs form any part of the network for all storms up to and including the 100-year + climate change event. This ensures that all the surface water up this storm event is contained within the development area of the school.

14. Maintenance Requirements

The extent of the drainage network and SuDS features for the development site are shown on the surface water management layout and detail drawings in Appendix I. The drainage networks and SuDS methods are to be maintained and managed to ensure that the systems are working affectively, and subsequently reducing the risk of flooding on the site, and surrounding land.

The management and maintenance of the surface water drainage networks and SuDS features will be by the caretakers of the exiting school, where the additional features will form part of the overall school maintenance and management. Details of the requirements are as follows:

14.1. Drainage Networks

Operation	Frequency
Inspect and identify any areas that are not operating correctly, if required, take remedial actions	Monthly for 3 months, then six monthlies
Debris removal from manholes (where may cause risk performance)	Monthly
Where rainfall into network from above, check surface or filter for blockage or silt, algae or other matter by jetting	As required, but at least twice a year
Remove sediment from pipework by jetting.	Annually or as required
Repair/check all inlets, outlets and overflow pipes	As required
Inspect/check all inlets, outlets, and overflow pipes to ensure that they are in good condition and operating as designed	Annually and after large storms

14.2. Attenuation Tank and Flow Control Chamber

Operation	Frequency
Inspect and identify any areas that are not operating correctly, if required, take remedial actions	Monthly for 3 months, then six monthlies
Debris removal from tank and flow control chamber (where may cause risk performance)	Monthly
Where rainfall into tank and flow control manhole from above, check surface or filter for blockage or silt, algae or other matter by jetting	As required, but at least twice a year
Remove sediment from upstream surface water network by jetting.	Annually or as required
Repair/check all inlets, outlets and overflow pipes	As required
Inspect/check all inlets, outlets, and overflow pipes to ensure that they are in good condition and operating as designed	Annually and after large storms

14.3. Permeable Paving

Operation	Frequency
Inspect and identify any areas that are not operating correctly, if required, take remedial actions	Monthly for 3 months, then six monthlies
Debris removal from on surface of permeable paving (where may cause risk performance)	Monthly
Where rainfall infiltration into [permeable paving and filter drain structure, lengths and ensure working effectively.	As required, but at least twice a year

14.4. Linked to Further Maintenance and Maintenance Activities

The maintenance of the drainage network and SuDS features are to be linked with the wider site maintenance plan for the commercial and residential building. A log of all maintenance activities is to be kept and made available to the local planning authority (LPA) and / or the Lead Local Flood Authority (LLFA) on request.

15. Surface Water Design Exceedance

In the unlikely event of a storm exceeding the design 100-year + 40% climate change storm event, or blockage in the system due to poor management and maintenance, surface water may flow form the surface water network.

Surface water to follow the topography of the existing / proposed ground and flow in a southerly direction towards the school playing fields. Surface water to flow away from the proposed existing school buildings and

will be contained within the grassed playing fields.

Therefore, an exceedance event will not increase the flood risk to any building within the development site, or prosperities / building near the development.

16. Water Quality / Pollutants

The source of any potential pollutants will be from the surface water run-off from the school building roof areas and external permeable paving areas.

The pollutants from the roof are deemed to be very low, and therefore no pollutant control measures will be required. The surface water run-off from the external areas will discharge through the permeable paving system, where the granular material will act as a pollutant control.

17. Development Management and Construction Phase

Any existing drainage within the site, is to be maintained during the construction of the new buildings and external hard standing areas. The flow control chamber and below ground attenuation tank are to be the first parts of the drainage network to be built. This will ensure that the surface water discharge from any phase of the network will be restricted to the required run-off rates.

18. Conclusion / Summary

18.1. Existing Flood Probability

All potential sources of flooding to the development site have assessed, and it is deemed that the probability of flooding from all existing sources is low

18.2. SuDS Principles and Surface Water Discharge Destination

All feasible SuDS methods, and surface water discharge destination have been assessed, with the feasible SuDS methods being rainwater harvesting butts (location to be confirmed); permeable paving system, an attenuation tank in the form of cellular units; and a flow control chamber. The surface water run-off destination from the post development area will be to the existing surface water network within the access road of the school. The surface water run-off destination will replicate that of the pre-development.

18.3. Peak Flow Control

The surface water run-off has been restricted to as low as possible to prevent blockage and subsequent flooding, The flow control diameter is to be 75mm, which equates to a maximum surface water run-off rate of between 2.30 l/s for the 1-year storm event, and 3.00 l/s for up to the 1 in 100-year + 40% climate change storm event.

The surface water run-off rates are greater than the equivalent greenfield rates, however, are between 43% to 85% betterment of the pre-development run-off rates, and therefor adhere to the local authority minimum requirements, without increasing the flood risk to the existing drainage network and school site.

18.4. Volume Control

The surface water run-off volume has been restricted to 85.72m² for the 100-year, 6-hour storm event. The surface water run-off volume for the post development exceeds the greenfield and pre-development run-off volume, however as the rate at which the volume will discharge to the existing network will be reduced by 85% the additional volume will not result in flooding to the existing drainage network and school. Therefore, the surface water discharge volume is deemed to be acceptable.

18.5. Flood Risk within the Development

The below ground attenuation tank has been suitably sized / designed so that no flooding occurs within the network during the 1 in 1-year; 1 in 30-year; and 1 in 100-year storm event + 40% climate change.

18.6. Management and Maintenance

The management and maintenance of the surface water drainage networks and SuDS features will be by the caretakers of the exiting school, where the additional features will form part of the overall school maintenance and management

18.7. Network Exceedance Event

In the unlikely network exceedance event, Surface water to follow the topography of the existing / proposed ground and flow in a southerly direction towards the school playing fields. Surface water to flow away from the proposed existing school buildings, and will be contained within the grassed playing fields. Therefore, an exceedance event will not increase the flood risk to any building within the development site, or prosperities / building near the development.

18.8. Water Quality

LE-020- King James' School Expansion - Flood Risk Assessment and SW Management Report

The source of any potential pollutants will be from the surface water run-off from the school building roof areas and external permeable paving areas. The pollutants from the roof are deemed to be very low, and therefore no pollutant control measures will be required. The surface water run-off from the external areas will discharge through the permeable paving system, where the granular material will act as a pollutant control.

Appendix A Site Location Plan

	FARREL Do not s	L & CLARK LLP scale from this	° © 6 drawing		
	Rev.	De Pre-app submission	escription review.	Date B 24/04/20 R.	S y AS
_					
×	NOTE:				
·	-Notional Ground le	road level +12 evel for purpos	23.19 indicated te of pre-application	as Level 00 or ation.	
-	-Massing -Existing	rorm shown on and Proposed I	ιy. Layout(s) su levels of site un	bject to change. der development.	
-		site ^k	ooundarv		
-		land	ownership		
/	0 13	5 <u></u> 25 ^{- 2}	75 50 4	2 5m	
	Scale	1:1250			
\geq					
	C\Users\Scott\ccs c	consulting lifeted\Leeds Projects - LE-xxx Pr	rojects/LE-000 - FLC King Janes School Expansio	\\Bradings\Current BVG Fles\Architect\303_02-1-Black-84	10192.jpg
		59 0922		ON 0 9210	
	Leeds@	farrellandclark.co.u	uk London k.co.uk	@farrellandclark.co.uk	
	Status:	PLANNIN	IG PRE-API	>	S0
	Client:	Kirklees	Council		
		1/:00 1000			
	Project	: King Jan	ness Schoo	L Expansion	
	Title:	Location	ı Plan		
		A - 7		1 2 2 2 2	
	Drawn:	AZ	Date: Ap	or' 2020	۰ ۸ ۵

Appendix B Topographical Survey

414750N

Topographic, Building & Laser Scanning Surveys	
THE OLD MILL	
HIGHFIELD, TINGLEY WAKEFIELD	
WF3 1LA	
Mob : 07949 195764 email : mail@ct-surveys.com	
© COPYRIGHT CT SURVEYS LTD. REPRODUCTION OF THIS INFORMATION IS PROHIBITED WITHOUT WRITTEN AUTHORITY FROM CT SURVEYS LTD.	
ABBREVIATIONS	
AR ASSUMED ROUTE OSA OUTSIDE SURVEY AREA AV AIR VALVE P POST / POLE B BOLLARD RL RIDGE LEVEL	
BH BOREHOILE RE RODDING EYE BT BRITISH TELECOM CHAMBER RS ROAD SIGN CATV CABLE TV RWP RAINWATER PIPE CP CABLE PIT S STAY	
CL COVER LEVEL SC STOP COCK CR CABLE RISER ST STOP TAP DP DOWN PIPE SV STOP VALVE EI EAVES LEVEL SVP SOU VENT PIPE	
EP ELECTRICITY POLE TC TRAFFIC CONTROL ER EARTH ROD TCB TELEPHONE CALL BOX FH FIRE HYDRANT TFR TAKEN FROM RECORDS FL EVEL or EENCE LEVEL TH THPESHOL DUEVEL	
FR FLAT ROOF LEVEL TL TRAFFIC LIGHTS G GULLY TP TELEGRAPH POLE GPR TRACED BY G.P.R. UTGA UNABLE TO GAIN ACCESS GV GAS VALVE UTL UNABLE TO LOCATE	
IC INSPECTION CHAMBER UTR UNABLE TO RAISE IL INVERT LEVEL UTS UNABLE TO SURVEY JB JUNCTION BOX UTT UNABLE TO TRACE KWW KEEPS WIEP WI WATER LEVEL OF WALL LEVEL	
LB LITTER BIN OF LETTER BOX VP VENT PIPE LP LAMP POST WM WATER METER MH MANHOLE WO WASH OUT VALVE	
NE NOTEOCATED WP WATER FIPE NT NO TRACE	
b BEAM HEIGHT c CILL HEIGHT cht CEILING HEIGHT dht DOOR HEIGHT	
fcht FALSE CEILING HEIGHT +10.26 FLOOR LEVEL +[10.26] BEAM/OVERHEAD LEVEL h HEAD HEIGHT	
p PURLIN HEIGHT r RIDGE BOARD HEIGHT sp SPRING POINT STEPS / STAIRS UP	
FENCE LINETYPES	
— - — - — GENERAL FENCE — x — x — x — IRON RAILING FENCE — □ — □ — □ - POST & RAIL FENCE	
- x x x BARBED WIRE FENCE - 1 - 1 CLOSE BOARDED FENCE - 1 1	
ALL SERVICES TO BE FIELD VERIFIED.	
ALL DRAWINGS REMAIN THE PROPERTY OF CT SURVEYS LTD UNTIL ALL PAYMENTS HAVE BEEN MADE.	L
CT SURVEYS IS A MEMBER OF:	-
ASSOCIATION COnstructionline	
SURVEY NOTES: The survey is fitted to National Grid and Datum using GPS, and has been drawn at a scal factor of 1.000	le
Due to the scale factor any setting out or design works should strictly use the control co-ordinates as shown on the drawing.	
SURVEY REVISIONS PREVIOUS DWG NO: -	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: - REVISION NO: - ORIGINAL SURVEY DATE: - REVISION NOTES: -	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: ORIGINAL SURVEY DATE: REVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS CLENT: Farrell & Clark Architects	
SURVEY REVISIONS PREVIOUS DWG NO: PREVIOUS DWG NO: PREVIOUS DWG NO: PREVISION NO: PREVISION NOTES:	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS CLENT: Farrell & Clark Architects PROJECT TITLE: King James School, 42A St Helens Gat	
SURVEY REVISIONS PREVIOUS DWG NO: PREVIOUS DWG NO: PREVIOUS DWG NO: PROVIDE SURVEY DATE: PROVED NOTES: LAYOUT VIEWS LAYOUT VIEWS LAYOUT VIEWS CLENT: Farrell & Clark Architects PROVED TITLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: REVISION NO: REVISION NOTES: REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS LAYOUT VIEWS CLEMT: Farrell & Clark Architects ROJECT TITLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG DEXWING NUMBER: 4687AJB/1	
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: ORIGINAL SURVEY DATE: REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS LAYOUT VIEWS CLENT Farrell & Clark Architects PROJECT TITLE King James School, 42A St Helens Gat Huddersfield, HD4 6SG DOWING NUMBER 4687AJB/1	e,
SURVEY REVISIONS PREVIOUS DWG NO: PREVIOUS DWG NO: PREVISION NO: PREVISION NO: PREVISION NOTES: PROVECT SUBJECT SUBJEC	Ee,
SURVEY REVISIONS PREVIOUS DWG NO: PREVIOUS DWG NO: PREVISION NO: PREVISION NO: PREVISION NOTES: PROJECT THE: PROJECT THE: PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG PROJECT THE: King James School, 42A St Helens Gat King James School, 42	Ee,
SURVEY REVISIONS PREVIOUS DWG NO: REVISION NO: CURRAL SURVEY DATE REVISION NOTES: LAYOUT VIEWS LAYOUT VIEWS LAYOUT VIEWS LAYOUT VIEWS CLENT: Farrell & Clark Architects REVISION INDEE: REVISION INDEE: REVISION IND	
SURVEY REVISIONS PREVISION NOT: Intervision NOTES: LAYOUT VIEWS LAYOUT VIEWS LAYOUT VIEWS CLEAT: Farrell & Clark Architects REGISTION FOR School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat Huddersfield, HD4 6SG CREAT: EXEMPLE: King James School, 42A St Helens Gat H	
SURVEY REVISIONS PREVIOUS DWG NO: IEVISION NO: IEVISION NOTES: IEVISION NOTES: IEVISION NOTES: IEVISION NOTES: IEVISION VIEWS IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

Appendix C Proposed Site Plans

FARRELL & CLARK LLP © Do not scale from this drawing				
Rev.	Description	Date	Ву	

Oxiser/Sectives exacting Bilediese Prejects - LB-sec Preject/LB-SD - FiC Ng Jane Sches Opende/Sculg/Gerent 245 Fist/orbites/LSH_B-Sid-SHIMLjg					
LEEDS 0113 259 Leeds@far WWW.f	0922 rrellandclark.co.uk Farrellandcla	ا ر د rk.co.uk	LONDON 0207 580 9210 London@farrellandcl	ark.co.uk	
Status:	PRELIMIN	IARY		S0	
Client:	Kirklees	Counc	il		
Project:	King Jam	nes's Sc	hool Expa:	nsion	
Title:	Level 00	GA - P	Proposed		
Drawn:	RAS	Date:	Apr' 2020)	
Check:	NJC	Scale:	1:100	@A1	
Drawing	No.: project-origi	NATOR-ZONE-LEVEL-T	YPE-ROLE-NUMBER	Rev:	
303_02					

Appendix D British Geological Survey Data

		14224/96	BOREHOLE RECO		አጥድሮ			:		
	Ground Level	11221, 50		ROAD ALMOND	BIRVH	פמקותוז	FIELD	415	791	
	BOREHOLE N	0 3	British Geological Survey Date	British Geological Survey DateAPRIL, 1996 British Geological Survey						
	Depth Thick- ness	Legend	Description of Strata	Type of Sample	C kN/m ²	M %	Ø	Density kg/m ³	N	
	1.500		Firm grey brown mottled silty clay	1.000 u	68.6	21		1925		
Dritis	Geological Sun ey 1.500 0.750		British Geological Survey Very stiff grey brown mudstone shale	2.000	For 55	miish Geo	ogical S	tion	50	
	2.250			F						
Britis	i Geological Sur ey		British Geological Survey			British Geol	logical S	тией		
Billio	n Geological Sulvey Water Struck at		British Geological Survey	ding Water	Level	British Geol	logical S	uvey		
	Undisturbed Sample Disturbed Sample Penetration Test Cohesion Angle of Internal Fric Moisture Content % Standard Penetration	U C tion Ø N v Value N	J. T. HYMAS (12 Yarm Road, Stockton-or Cleveland TS18 3NE Tel. 01642 607083 Fax.0	Site Inve 1-Tees, 1642 612355	estig	atio	n) L	.TD.		

[BOREHO	DLE RE	CORD						
	Contrac	t No	142	24/96	Client	WILLIAM	TURNBULL A	SSOCIAT	ES				~
	Ground Level				Location			ERSFIELD 416798			18		
	BOREH	OLE No	0		Date	APRIL 19	996	1				15q	12
	Depth	Thick- ness	Legend		Descriptio	n of Strata		Type of Sample	C kN/m ²	M %	Ø	Density kg/m ³	N
	0.800	0.800		Madoc	de up ground - casional bric}	- topsoil < fill	with						
British	Geological Surv	1.200	× × ×	Fi	British Geologic rm grey brown lty clay	al Survey mottled		1.000	63.5	36 ilish Geo	ogical St	1795 Wey	
	2.000		<u>×</u> _					- 2.000 p					34
	2.900	0.900		Ve we	ery compact gr eathered sands	ey brown tone							
0	Geological Surve	0.300		Ve	ery compact li	ght brown	I	• 3.000 p	for 1	Onn.	penet	ation	50
British	Geological Surve				British Geologic	al Survey				itish Geo	ogical Si		
	Water S	Struck a	t		·····		Standing	Water	r Level				<u> </u>
	Undisturbed Disturbed Penetratic Cohesion Angle of In Moisture (Standard	ed Sample Sample on Test nternal Frid Content % Penetratio	ction n Value	U O P C Ø M N	J. T. 12 Yarm Ro Cleveland T Tel. 01642 6	HYMA oad, Stock S18 3NE 607083	AS (Site ton-on-Tee Fax.01642	e Inv es, 2 612355	estig	jatio	on)	LTD.	

Appendix E Existing Drainage Details

RL + 128.58

Appendix F Greenfield Run-Off Rate and Volume Calculations

Flo Consult UK Ltd		Page 1
4 Market Square	King James School	
Old Amersham	Greenfield Run-Off	
Buckinghamphing UD7 000	Bata Calculations	
		- MICCO
Date 29/04/2020	Designed by MDS	Drainage
File	Checked by MDS	
Innovyze	Source Control 2018.1.1	
<u>IH 124</u>	Mean Annual Flood	
	Input	
Return Period (year Area (h SAAR (m	s) 1 Soil 0.300 a) 50.000 Urban 0.330 m) 948 Region Number Region 10	
	Results 1/s	
	QBAR Rural 129.9 DBAR Urban 218 1	
	01 year 189.8	
	01 year 189 9	
	Q2 years 212.4	
	Q5 years 263.0	
	Q10 years 296.4	
	Q20 years 327.2	
	030 years 341.8	
	Q50 years 360.2	
(Q100 years 391.4	
	2200 years 430.6	
0	2250 years 442.9	

©1982-2018 Innovyze

Flo Consult UK Ltd		Page 1
4 Market Square	King James School	
Old Amersham	Greenfield Run-Off	
Buckinghamshire, HP7 0D0	Volume Calculations	Micco
Date $29/04/2020$	Designed by MDS	
File	Checked by MDS	Drainage
Innovyze	Source Control 2018.1.1	
Greenf	ield Runoff Volume	
	FEH Data	
Peturn Period (vear	s) 100	
Storm Duration (min	s) 360	
FEH Rainfall Versi	on 1999	
Site Locati	on GB 417200 414500 SE 17200 14500	
C (1ki	m) -0.026	
D1 (1K) D2 (1k)	m) 0.421	
D3 (1k	m) 0.308	
E (1k	m) 0.308	
F (1ki	m) 2.388	
Area (h	a) 365.500	
SAAR (m	m) 884	
C	WI 121.412	
SPR HO	st 21.940	
URDEAL (USE	K) 0.5500	
	Results	
Deve		
Greenfield Ru	anoff Volume (m ³) 94992.979	
©198	2-2018 Innovyze	

Appendix G Pre-Development Run-Off Rate and Volume Calculations

Flo Consult UK Ltd		Page 1
4 Market Square	King James School	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	SW Run-Off Rates	Micco
Date 29/04/2020	Designed by MDS	
File	Checked by MDS	Digitigh
Innovyze	Network 2018.1.1	
STORM SEWER DESIGN	by the Modified Rational Meth	.od
Design	Criteria for Storm	
Dipo Sigoo CT	ANDARD Marbolo Sizoo CWANDARD	
Pipe Sizes Si	ANDARD Mannore Sizes Standard	
F	EH Rainfall Model	
Return Peri	od (years)	100
FEH Rainia Sit	ell version The Location GB 417200 414500 SE 1720	1999
510	C (1km)	-0.026
	D1 (1km)	0.397
	D2 (1km)	0.421
	D3 (1km)	0.308
	E (1Km) F (1km)	2.388
Maximum Rainfa	all (mm/hr)	50
Maximum Time of Concentrat	cion (mins)	30
Foul Sewag	ge (1/s/ha)	0.000
Volumetric Rur	DOII COEII. PIMP (%)	100
Add Flow / Climate	Change (%)	0
Minimum Backdrop	Height (m)	0.200
Maximum Backdrop	Height (m)	1.500
Min Design Depth for Optimi	sation (m)	1.200
Min Ver för Auto Design Min Slope for Optimisa	ation (1:X)	500
Design	ned with Level Soffits	
Time Ar	rea Diagram for Storm	
	ea bragram for beorm	
Time	Area Time Area	
(mins) (ha) (mins) (ha)	
0-	4 0.030 4-8 0.007	
Total Area	Contributing (ha) = 0.037	
Total P	ipe Volume (m³) = 0.237	
<u>Network</u>	Design Table for Storm	
DN Length Fall Slope I Area T F	Base & HVD DIA Sectio	n Turne Auto
(m) (m) (1:X) (ha) (min	s) Flow (1/s) (mm) SECT (mm)	Design
		-
	were Deculte makle	
Netw	OIK RESULTS TADLE	
PN Rain T.C. US/IL E I.Ar	ea Σ Base Foul Add Flow Vel	Cap Flow
(mm/hr) (mins) (m) (ha)	Flow (1/s) (1/s) (1/s) (m/s)	(1/s) (1/s)
©19	82-2018 Innovyze	

Flo Consult UK Ltd		Page 2
4 Market Square		
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	SW Run-Off Rates	Mirro
Date 29/04/2020	Designed by MDS	
File	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	
<u>Network</u> PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (m	Design Table for Storm C.E. Base k HYD DIA Section ins) Flow (1/s) (mm) SECT (mm)	Type Auto Design
1.0009.9501.4906.70.0301.00120.2402.6307.70.007	5.00 0.0 0.600 o 100 Pipe/Con 0.00 0.0 0.600 o 100 Pipe/Con	nduit 🔒 nduit 💣
Net	work Results Table	
PN Rain T.C. US/IL Σ I	.Area Σ Base Foul Add Flow Vel (Cap Flow
(mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (1	l/s) (l/s)
1.000 50.00 5.06 122.120	0.030 0.0 0.0 0.0 3.01 2	23.7 4.1
1.001 50.00 5.18 120.630	0.037 0.0 0.0 0.0 2.80 2	22.0 5.0
Simulat	ion Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor	0.750 Additional Flow - % of Total Fl 1.000 MADD Factor * 10m³/ha Stora	ow 0.000 ge 2.000
Hot Start (mins)	0 Inlet Coefficcie	nt 0.800
Hot Start Level (mm) Manhole Headloss Coeff (Global)	U Flow per Person per Day (1/per/da 0.500 Bun Time (min	y) 0.000 s) 60
Foul Sewage per hectare (1/s)	0.000 Output Interval (min	s) 1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FEH
Return Period (years)		100
FEH Rainfall Version		1999
Site Location	GB 417200	414500 SE 17200 14500
C (1km)		-0.026
D1 (1km)		0.397
D2 (1km)		0.421
D3 (1km)		0.308
E (1km)		0.308
F (1km)		2.388
Summer Storms		Yes
Winter Storms		Yes
Cv (Summer)		0.750
Cv (Winter)		0.840
Storm Duration (mins)		30

Flo Consult UK Ltd		Page 3
4 Market Square	King James School	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 ODQ	SW Run-Off Rates	Mirro
Date 29/04/2020	Designed by MDS	Drainago
File	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	
1 year Return Period Summary of	Critical Results by Maximum Leve for Storm	el (Rank 1)
Sim Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) 0 Foul Sewage per hectare (l/s) 0 Number of Input Hydrogra	nulation Criteria .000 Additional Flow - % of Total Flo 0 MADD Factor * 10m³/ha Storad 0 Inlet Coefficcien .500 Flow per Person per Day (1/per/day .000 aphs 0 Number of Storage Structures 0	ow 0.000 ge 2.000 nt 0.800 y) 0.000
Number of Online Contr Number of Offline Contr	cols 0 Number of Time/Area Diagrams 0 cols 0 Number of Real Time Controls 0	
Synthet Rainfall Model FEH Rainfall Versior Site Locatior C (1km) D1 (1km) D2 (1km) D3 (1km) E (1km) F (1km) Cv (Summer) Cv (Winter) Margin for Flood Risk W Analys	tic Rainfall Details FEH General Sector of the sector of	
Profile(s) Duration(s) (mins) 15 Return Period(s) (years) Climate Change (%)	Summer and Winte 5, 30, 60, 120, 240, 360, 480, 960, 144 1, 30, 10 0, 0,	er 10 10 00 0
		Water
US/MH Return Climat	e First (X) First (Y) First (Z) Overfl Surcharge Flood Overflow Act	.ow Level
PN Name Storm Period Change	surcharge flood Overllow Act.	(111)
1.000 1 15 Winter 1 +0 1.001 2 15 Winter 1 +0	% %	122.146 120.660
Curchanged Place	lad Disc	
US/MH Depth Volu	me Flow / Overflow Flow Leve	1
PN Name (m) (m ³) Cap. (1/s) (1/s) Status Exceed	ded
1.000 1 -0.074 0.0 1.001 2 -0.070 0.0	000 0.15 3.4 OK 000 0.19 4.0 OK	
	2-2018 Innovuze	

Flo Consult UK Ltd		Page 4
4 Market Square	King James School	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	SW Run-Off Rates	Micro
Date 29/04/2020	Designed by MDS	
File	Checked by MDS	Dialitage
Innovyze	Network 2018.1.1	
30 year Return Period Summary of Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog Number of Online Cor Number of Offline Cor Synth Rainfall Moo	of Critical Results by Maximum Lev for Storm imulation Criteria 1.000 Additional Flow - % of Total Fl 0 MADD Factor * 10m³/ha Stora 0 Inlet Coefficcie 0.500 Flow per Person per Day (1/per/da 0.000 graphs 0 Number of Storage Structures 0 0 Time/Area Diagrams 0 0 Number of Real Time Controls 0 0 FEH	ow 0.000 ge 2.000 nt 0.800 y) 0.000
FEH Rainfall Versi Site Locati C (1) D1 (1) D2 (1) D3 (1) E (1) F (1) Cv (Summe Cv (Winte	Lon 1999 Lon GB 417200 414500 SE 17200 14500 cm) -0.026 cm) 0.397 cm) 0.421 cm) 0.308 cm) 0.308 cm) 0.308 cm) 2.388 er) 0.750 er) 0.840	
Margin for Flood Risk Anal Profile(s) Duration(s) (mins) Return Period(s) (years) Climate Change (%)	Warning (mm) 450.0 DVD Status OFF ysis Timestep Fine Inertia Status OFF DTS Status ON Summer and Winte 15, 30, 60, 120, 240, 360, 480, 960, 144 1, 30, 10 0, 0,	er 40 00 0
US/MH Return Clim PN Name Storm Period Char	ate First (X) First (Y) First (Z) Overfinge Surcharge Flood Overflow Act	Water low Level . (m)
1.000 1 15 Winter 30 1.001 2 15 Winter 30	+0% +0%	122.170 120.689
Surcharged Flo US/MH Depth Vo PN Name (m) (s	ooded Pipe lume Flow / Overflow Flow Leve m ³) Cap. (l/s) (l/s) Status Excee	el ded
1.000 1 -0.050 0 1.001 2 -0.041 0	0.000 0.49 10.8 OK 0.000 0.63 13.4 OK	
©19	982-2018 Innovyze	

Flo Consult UK Ltd		Page 5
4 Market Square	King James School	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	SW Run-Off Rates	Micco
Date 29/04/2020	Designed by MDS	
File	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	
100 year Return Period Su	mmary of Critical Results by Max	ximum Level (Rank
	1) for Storm	
	Simulation Criteria	
Areal Reduction H	actor 1.000 Additional Flow - % of	Total Flow 0.000
Hot Start	mins) 0 MADD Factor * 10m ³ /	ha Storage 2.000
Hot Start Level	(mm) 0 Inlet Co	effiecient 0.800
Foul Sewage per hectare	(1/s) 0.000 Flow per Person per Day (1/per/day) 0.000
Number of Input	Hydrographs 0 Number of Storage Struct	tures 0
Number of Onli	ne Controls O Number of Time/Area Diag	jrams U Trols O
Number of Offic	The concrete of Manager of Mear Time Conc	,1010 V
	Synthetic Rainfall Details	
Rainfa	ll Model E	?EH
Site	Location GB 417200 414500 SE 17200 145	500
	C (1km) -0.0)26
	D1 (1km) 0.3	397
	D2 (1km) 0.4 D3 (1km) 0.3	121 308
	E (1km) 0.3	308
	F (1km) 2.3	388
Cv	(Summer) 0.7	750
CV	(Winter) 0.0	540
Margin for Flood	Risk Warning (mm) 450.0 DVD Stat	us OFF
	Analysis Timestep Fine Inertia Stat	us OFF
	DIS Status ON	
Profi	le(s) Summer a	and Winter
Return Period(s) (y	ears) 13, 30, 60, 120, 240, 360, 460, 1	1440 L, 30, 100
Climate Chang	e (%)	0, 0, 0
		Water
US/MH Return	Climate First (X) First (Y) First (Z) Overflow Level
PN Name Storm Period	l Change Surcharge Flood Overflow	w Act. (m)
1 000 1 15 Winter 100	+0%	122 185
1.001 2 15 Winter 100) +0%	120.709
0	d Floodod	
US/MH Depth	Volume Flow / Overflow Flow	Level
PN Name (m)	(m ³) Cap. (1/s) (1/s) State	us Exceeded
1 000 1 0.0		ОV
1.000 1 -0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OK
		-
	©1982-2018 Innovyze	

Flo Consult UK Ltd			Page 1
4 Market Square	King James Scho	ol	
Old Amersham	Pre-Development		
Buckinghamshire, HP7 ODQ	SW Run-Off Rate	S	Mirrn
Date 29/04/2020	Designed by MDS		Drainago
File	Checked by MDS		Diamage
Innovyze	Network 2018.1.	1	
STORM SEWER DESIG	N by the Modified	Rational Method	
Desig	gn Criteria for Sto	orm	
Pipe Sizes S	STANDARD Manhole Sizes	STANDARD	
	FEH Rainfall Model		
Return Pe	riod (years)	-	100
FEH Rain	tall Version	L ۱ /1/500 عبر 17200 1/	500
ے ا	C (1km)	-0.	026
	D1 (1km)	0.	397
	D2 (1km)	0.	421
	D3 (1km)	0.	308
	E (1km)	0.	308
	F (1km)	2.	388
Maximum Rain Mouimum Time of Concentu	tall (mm/hr)		50
Maximum Time of Concentr Foul Sew	acton (mins) age (l/s/ba)	0	000
Volumetric B	unoff Coeff.	0.	750
	PIMP (%)		100
Add Flow / Climat	e Change (%)		0
Minimum Backdro	p Height (m)	0.	200
Maximum Backdro	p Height (m)	1.	500
Min Design Depth for Opti	misation (m)	1.	200
Min Vel for Auto Desig Min Slope for Optimi	n only (m/s) sation (1:X)	L	500
Desi	gned with Level Soffi	ts	
Simulat	zion Criteria for S	Storm	
Volumetric Bunoff Coef	f 0 750 Additional	Flow - % of Total Fl	OW 0 000
Areal Reduction Facto	r 1.000 MADD Fa	ctor * 10m³/ha Stora	qe 2.000
Hot Start (mins) 0	Inlet Coeffiecie	nt 0.800
Hot Start Level (mm) 0 Flow per Pers	on per Day (l/per/da	y) 0.000
Manhole Headloss Coeff (Global) 0.500	Run Time (min	s) 60
Foul Sewage per hectare (l/s) 0.000	Output Interval (min	.s) 1
Number of Input Hudre	arapha (Number of St	orago Structuros O	
Number of Online Co	ntrols 0 Number of Ti	me/Area Diagrams 0	
Number of Offline Co	ontrols 0 Number of Re	al Time Controls 0	
Synth	etic Rainfall Deta	ils	
	e de l		
Raintall M Baturn Doried (***	ouel ars)	FEH 100	
FEH Rainfall Ver	sion	1999	
Site Loca	tion GB 417200 414500	SE 17200 14500	
С (1km)	-0.026	
D1 (1 km)	0.397	
D2 (1km)	0.421	
D3 (E (lkm) lkm)	0.308 0.308	
``````````````````````````````````````	000 0010 7		
©1	1982-2018 Innovyze		

Flo Consult UK Ltd		Page 2
4 Market Square	King James School	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	SW Run-Off Rates	Mirro
Date 29/04/2020	Designed by MDS	Dcainago
File	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

### Synthetic Rainfall Details

F (1km)	2.388
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.840
Storm Duration (mins)	30

Flo Consult UK Ltd				Pag	e 3			
4 Market Square	King James Sc	hool						
Old Amersham	Pre-Developme	nt						
Buckinghamshire, HP7 0DQ	SW Run-Off Ra	tes		Mi				
Date 29/04/2020	Designed by M	DS						
File	Checked by MD	S		DIC	anaye			
Innovyze	Network 2018.	1.1						
100 year Return Period Summary	of Critical R	esults	by Maximur	n Level	(Rank			
	1) for Storm							
Sir	mulation Criteria	ı						
Areal Reduction Factor	1.000 Additiona	al Flow -	- % of Total	Flow 0.	000			
Hot Start (mins)	0 MADD	Factor '	* 10m³/ha St	orage 2.	000			
Hot Start Level (mm)	0 0 500 Flow por Bo	Ir Ir	nlet Coeffie	cient 0.	.800			
Foul Sewage per hectare (1/s)	0.000 filow per fe 0.000	erson bei	г рау (турет	/uay) 0.	000			
Number of Input Hydrogr	aphs 0 Number of	Storage	Structures	0				
Number of Offline Cont Number of Offline Cont	rols 0 Number of rols 0 Number of	Time/Ar Real Ti	ea Diagrams me Controls	0				
				-				
Synthe	tic Rainfall Det	ails						
Rainfall Mode FEH Rainfall Versio	1 n		F'EH 1999					
Site Locatio	on GB 417200 4145	00 SE 17	200 14500					
C (1km	1)		-0.026					
D1 (1km	1)		0.397					
D2 (IKM D3 (Ikm	1) 1)		0.308					
E (1km	1)		0.308					
F (1km	1)		2.388					
Cv (Summer Cv (Winter	·)		0.750					
	/		0.010					
Margin for Flood Risk W	Warning (mm) 450.	0 D1	/D Status OF	Έ				
Analys	DTS Status C	Ne Inerti	ia Status Of	.Έ.				
	210 000000 0							
	Profile(s) Summe	r and Wi	nter					
Duration	(s) (mins)	I UNU WI	360					
Return Period(	s) (years)		100					
Climate	Change (%)		0					
		Water	Surcharged	Flooded				
US/MH PN Name Event	US/CL	Level	Depth (m)	Volume (m ³ )	Flow /			
	(11)	(111)	(111)	(111)	Cap.			
1.000 1 360 minute 100 year Summ	ner I+0% 123.530	122.144	-0.076	0.000	0.13			
1.001 2 360 minute 100 year Summ	uer 1+0% 122./20	120.058	-0.072	0.000	U.1/			
		Pipe						
US/MH OV	erflow Discharge	Flow	+ > + 110					
PN Name (	1/S) VOL (M ³ )	(1/S) S	LATUS					
1.000 1	16.618	2.9	OK					
1.001 2	20.517	3.6	OK					
©1982-2018 Innovyze								



Appendix H Surface Water Management Layout and Details



# notes :

- 1. IF THIS DRAWING HAS BEEN RECEIVED ELECTRONICALLY IT IS THE RECIPIENTS RESPONSIBILITY TO PRINT THE DOCUMENT TO THE CORRECT SCALE
- 2. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS STATED OTHERWISE. IT IS RECOMMENDED THAT INFORMATION IS NOT SCALED OFF THIS DRAWING
- 3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS

## Legend

 Proposed Surface Water Drainage
Perforated Pipe in Paving System
 Existing Surface Water Drainage
Existing Foul Water Drainage
Permeable Paving
 Development Extents Boundary

### Site Specific Drainage Notes:

Rainwater pipe and internal foul locations to be confirmed by Architect. Discrepancies to be brought to CCS Consulting attention prior to the commencement of drainage works.

Final external levels to be confirmed. Levels currently based on topographical survey levels and finished floor level. Manhole and inspection cover levels subject to change once final external levels are known.

Existing land drainage (to which the proposed is connecting / discharging) location and depth to be confirmed prior to the commencement of any drainage works.

All foul water pipes to be 100Ø, and all surface water pipes to be 150Ø unless shown otherwise.

Foul water down pipes to have rest bend invert of 450mm below finished floor level, unless stated otherwise.

Rainwater pipe to have rest bend invert of 600mm below finished floor level unless stated otherwise.

### Drainage Specifications

Foul water pipes to be Polypipe to BS EN 1401-1 or similar.

Surface water pipes to be Polypipe Ridgidrain or similar.

Threshold Drain to be ACO DoorWay Drain or similar

Inspection chambers to be WAVIN OSMA Universal IC or similar.

Manholes by FP McCann or similar.

Attenuation tank to be WAVIN AquaCell Prime or similar.

Silt trap chambers to be Polypipe Mini Silt Trap or similar

Flow control to be a Hydro-Brake by Hydro International or similar

Т3	Flow Control Details Amended	MDS	21.10.20
T2	SW Network Amended	MDS	14.08.20
T1	Issued for Tender	MDS	31.07.20
P1	Issued for Planning	MDS	30.09.19
rev	amendments	by	date

	<b>CCS</b> consulting
Client:	

# King James School

Project: King James School Extension

Title:

# Surface Water Management Layout

Date Created: Drawing Scale: Drawing Status: 1:100@A1 Apr '20 Tender Т3 LE-020 / A1 / 100 Drawn By: Initial Review: Project Leader: MS LB LB



MANHOLE TYPE B CIRCULAR PRECAST CONCRETE MANHOLE DETAIL

# notes :

LE-020 / A1 / 102

Project Leader:

LB

Drawn By:

MS

T1

Initial Review:

LB



### notes :

- 1. IF THIS DRAWING HAS BEEN RECEIVED ELECTRONICALLY IT IS THE RECIPIENTS RESPONSIBILITY TO PRINT THE DOCUMENT TO THE CORRECT SCALE
- 2. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS STATED OTHERWISE. IT IS RECOMMENDED THAT INFORMATION IS NOT SCALED OFF THIS DRAWING
- 3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS

![](_page_62_Figure_7.jpeg)

Drawing Status: Tender	Date Created: July '20	Drawing Scale: N.T.S
LE-020	/ A1 / 103	Rev T1
Project Leader:	Drawn By: MS	Initial Review:

![](_page_63_Figure_0.jpeg)

# TYPICAL PIPE THROUGH GROUND BEAM / FOUNDATION DETAIL

65mm COMPACTED GRAVEL BEDDING TO MARSHALL RECOMMENDATION 300mm DEEP SUB-BASE - EITHER TYPE 3 MATERIAL OR 20mm ANGULAR PRIORA AGGREGATE BY MARSHALLS OR EQUIVALENT. 30% VOID RATIO TO BE ACHIEVED. REFER TO -LAYOUT FOR FORMATION DEPTHS THROUGHOUT SUB-BASE VARIED SUB-BASE FORMATION LEVEL. LEVEL TO BE 445mm BELOW FINISHED LEVEL (REFER TO DRAWING DR10 FOR EXTERNAL LEVELS)  $\nabla$ 

1022110200 • 

![](_page_63_Figure_6.jpeg)

![](_page_63_Figure_7.jpeg)

![](_page_63_Figure_8.jpeg)

![](_page_63_Figure_9.jpeg)

![](_page_63_Figure_10.jpeg)

![](_page_63_Figure_11.jpeg)

# notes :

- 1. IF THIS DRAWING HAS BEEN RECEIVED ELECTRONICALLY IT IS THE RECIPIENTS RESPONSIBILITY TO PRINT THE DOCUMENT TO THE CORRECT SCALE
- 2. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS STATED OTHERWISE. IT IS RECOMMENDED THAT INFORMATION IS NOT SCALED OFF THIS DRAWING
- 3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS

T1	Issued for Tender	MDS	31.07.20
rev	amendments	by	date
		Бу	
	CCC consultin	9	
Client			
	King James School		
Projec	t:		
	King James School Extension		
Title:			
	Drainage Details Sheet 3		
Drawin Ten	ng Status: Date Created: der July '20	Draw	ving Scale: .S
Drawi	ng Number	Rev:	
LE	-020 / A1 / 104	Τ́	1
Projec LB	t Leader: Drawn By: MS	Initial Rev LB	iew:

![](_page_64_Picture_0.jpeg)

Appendix I

Surface Water Network / Management Calculations

Flo Consult UK Ltd		Page 1
4 Market Square	King James School	
Old Amersham	SW Network / Management	
Buckinghamshire, HP7 0DQ	Calculations	Micro
Date 21/10/2020	Designed by MDS	
File King James School - SW	Checked by MDS	Diamaye
Innovyze	Network 2018.1.1	
STORM SEWER DESIGN	by the Modified Rational Method	<u>1</u>
Design	Criteria for Storm	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
Eturn Peri	CH Rainfall Model	100
FEH Rainfa	ll Version	1999
Site	e Location GB 417200 414500 SE 17200	14500
	C (1km) -	-0.026
	DI (1  km) D2 (1  km)	0.397
	D3 (1km)	0.308
	E (1km)	0.308
	F (1km)	2.388
Maximum Rainta.	ll (mm/hr)	50 30
Foul Sewage	e (l/s/ha)	0.000
Volumetric Runo	off Coeff.	0.750
	PIMP (%)	100
Add Flow / Climate (	Change (%)	40
Maximum Backdrop H	Height (m)	0.000
Min Design Depth for Optimis	sation (m)	1.200
Min Vel for Auto Design o	only (m/s)	1.00
Min Slope for Optimisat	tion (1:X)	500
Design	ed with Level Soffits	
Time Are	ea Diagram for Storm	
Time	Area Time Area	
(mins)	(ha) (mins) (ha)	
0-4	4 0.063 4-8 0.018	
Total Area	Contributing (ha) = 0.081	
Total Pi	pe Volume (m³) = 7.132	
	acian Mable for Otom	
Network D	esign Table for Storm	
PN Length Fall Slope I.Area T.E.	Base k HYD DIA Section	Type Auto
(m) (m) (1:X) (ha) (mins	s) Flow (l/s) (mm) SECT (mm)	Design
Netwo	ork Results Table	
PN Rain T.C. US/ILΣI.Are (mm/hr) (mins) (m) (ha)	ea ΣBase Foul Add Flow Vel ( Flow (l/s) (l/s) (l/s) (m/s) (l	Cap Flow L/s) (l/s)
©198	32-2018 Innovyze	

Flo Consult UK Ltd					
4 Market Square	King James School				
Old Amersham	SW Network / Management				
Buckinghamshire, HP7 ODQ	Calculations	Mirro			
Date 21/10/2020	Designed by MDS	Desinado			
File King James School - SW	Checked by MDS	Diamage			
Innovyze	Network 2018.1.1				

#### Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000 1.001	29.600 19.100	0.120 0.075	246.7 254.7	0.022 0.016	5.00 0.00		0.0	0.600 0.600	0	300 300	Pipe/Conduit Pipe/Conduit	<del>3</del> <del>1</del>
2.000	10.000	0.040	250.0	0.000	5.00		0.0	0.600	0	300	Pipe/Conduit	ð
1.002	9.100	0.037	245.9	0.016	0.00		0.0	0.600	0	300	Pipe/Conduit	ď
3.000	22.450	1.087	20.7	0.027	5.00		0.0	0.600	0	300	Pipe/Conduit	8
1.003	10.650	0.583	18.3	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	•

#### Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000 1.001	50.00 50.00	5.50 5.82	121.445 121.325	0.022 0.038	0.0	0.0	1.2 2.1	1.00 0.98	70.4 69.3	4.2 7.2
2.000	50.00	5.17	121.290	0.000	0.0	0.0	0.0	0.99	70.0	0.0
1.002	50.00	5.97	121.250	0.054	0.0	0.0	2.9	1.00	70.5	10.2
3.000	50.00	5.11	122.300	0.027	0.0	0.0	1.5	3.48	245.6	5.1
1.003	50.00	6.02	121.213	0.081	0.0	0.0	4.4	3.70	261.2	15.4

Flo Consult UK Ltd	Page 3		
4 Market Square	King James School		
Old Amersham	SW Network / Management		
Buckinghamshire, HP7 0DQ	Calculations	Mirro	
Date 21/10/2020	Designed by MDS	Dcainago	
File King James School - SW	Checked by MDS	Diamage	
Innovyze	Network 2018.1.1		

### Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Conr	MH nection	MH Diam.,L*W (mm)	PN	Pipe C Inver Level	)ut :t (m)	Diameter (mm)	PN	Pipes Inve Level	In rt I (m)	)iameter (mm)	Backdroj (mm)
S1	123.040	1.595	Open	Manhole	1200 x 750	1.000	121.4	445	300					
S2	123.040	1.715	Open	Manhole	1200 x 750	1.001	121.	325	300	1.000	121.	325	300	
S3	123.110	1.820	Open	Manhole	1200	2.000	121.3	290	300					
S4	123.200	1.950	Open	Manhole	1200	1.002	121.2	250	300	1.001	121.	250	300	
										2.000	121.	250	300	
S5	124.200	1.900	Open	Manhole	450	3.000	122.3	300	300					
S6/FC	123.330	2.117	Open	Manhole	1200	1.003	121.2	213	300	1.002	121.	213	300	
										3.000	121.	213	300	
EX SWMH	123.530	2.900	Open	Manhole	0		OUTE	ALL		1.003	120.	630	300	
			'		1								'	

Flo Consult UK Ltd	Page 4		
4 Market Square	King James School		
Old Amersham	SW Network / Management		
Buckinghamshire, HP7 ODQ	Calculations	Mirro	
Date 21/10/2020	Designed by MDS	Dcainago	
File King James School - SW	Checked by MDS	Diamage	
Innovyze	Network 2018.1.1		

#### PIPELINE SCHEDULES for Storm

#### Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000 1.001	0	300 300	S1 S2	123.040 123.040	121.445 121.325	1.295 1.415	Open Manhole Open Manhole	1200 x 750 1200 x 750
2.000	0	300	S3	123.110	121.290	1.520	Open Manhole	1200
1.002	0	300	S4	123.200	121.250	1.650	Open Manhole	1200
3.000	0	300	s5	124.200	122.300	1.600	Open Manhole	450
1.003	0	300	S6/FC	123.330	121.213	1.817	Open Manhole	1200

#### Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000 1.001	29.600 19.100	246.7 254.7	S2 S4	123.040 123.200	121.325 121.250	1.415 1.650	Open Manhole Open Manhole	1200 x 750 1200
2.000	10.000	250.0	S4	123.200	121.250	1.650	Open Manhole	1200
1.002	9.100	245.9	S6/FC	123.330	121.213	1.817	Open Manhole	1200
3.000	22.450	20.7	S6/FC	123.330	121.213	1.817	Open Manhole	1200
1.003	10.650	18.3	EX SWMH	123.530	120.630	2.600	Open Manhole	0

#### Free Flowing Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.003 EX SWMH 123.530 120.630 0.000 0 0

#### Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 40.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage0.000Hot Start (mins)0Inlet Coefficient0.800Hot Start Level (mm)0Flow per Person per Day (l/per/day)0.000Manhole Headloss Coeff (Global)0.500Run Time (mins)60Foul Sewage per hectare (l/s)0.000Output Interval (mins)1Number of Input Hydrographs0Number of Offline Controls 00Number of Online Controls1Number of Storage Structures 4

©1982-2018 Innovyze

Flo Consult UK Ltd		Page 5									
4 Market Square	King James School										
Old Amersham	SW Network / Management										
Buckinghamshire, HP7 0DQ	Calculations	Mirro									
Date 21/10/2020	Designed by MDS	Dcainago									
File King James School - SW	Checked by MDS	Diamage									
Innovyze	Network 2018.1.1										
Simulation Criteria for Storm											
Number of Time/Area Diag	grams 0 Number of Real Time Controls 0										
Synthet	ic Rainfall Details										
Rainfall Mode	el FEH										
Return Period (years	5) 100										
FEH Rainfall Versio	on 1999										
C (1kr	n) -0.026										
D1 (1kr	n) 0.397										
D2 (1kr	n) 0.421										
E (1kr	n) 0.308										
F (1kr	n) 2.388										
Summer Storr	ns Yes										
Cv (Summe)	c) 0.750										
Cv (Winter	0.840										
Storm Duration (mins	30										
©198	32-2018 Innovyze										

Flo Consult IIK I.td		Page 6									
4 Market Square	King James School	Tage 0									
Old Imersham	SW Network / Management										
Buckinghamshiro HP7 000	Calculations										
Data 21/10/2020		MIC(O									
Date 21/10/2020	Checked by MDS	Drainage									
File King James School - Sw	Network 2010 1 1										
INCUVYZE INCLWOIK ZUIO.I.I											
Onlin	Online Controls for Storm										
Hydro-Brake® Optimum Manhole: S6/FC, DS/PN: 1.003, Volume (m ³ ): 4.5											
Ui	Unit Reference MD-SHE-0075-3000-1500-3000										
De	sign Head (m)	1.500									
Desid	jn Flow (l/s) Flush-Flo™ Ca	3.U lculated									
	Objective Minimise upstream	storage									
	Application	Surface									
S1	ump Available	Yes 75									
I Thve	ert Level (m)	121.213									
Minimum Outlet Pipe 1	Diameter (mm)	100									
Suggested Manhole 1	Diameter (mm)	1200									
Control	Points Head (m) Flow (1/s)	)									
Design Point	(Calculated) 1.500 3.0	D									
	Flush-Flo™ 0.329 2.	6									
Mean Flow ove	Kick-Flo® 0.671 2.1	1									
Mean Flow over Head Range - 2.4											
The hydrological calculations have	e been based on the Head/Dischar	ge relationship for the									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised	e been based on the Head/Dischar . Should another type of contro	ge relationship for the 1 device other than a 1 ations will be									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated	e been based on the Head/Dischar . Should another type of contro then these storage routing calcu	ge relationship for the l device other than a lations will be									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F	e been based on the Head/Dischar . Should another type of contro then these storage routing calcu low (1/s) Depth (m) Flow (1/s)	ge relationship for the l device other than a lations will be Depth (m) Flow (1/s)									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200	e been based on the Head/Dischar Should another type of contro then these storage routing calcu low (1/s) Depth (m) Flow (1/s) 2.7 3.000 4.1	<pre>ge relationship for the l device other than a lations will be Depth (m) Flow (l/s) 7.000 6.1</pre>									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400	e been based on the Head/Dischar Should another type of contro then these storage routing calcu low (1/s) Depth (m) Flow (1/s) 2.7 3.000 4.1 2.9 3.500 4.4	<pre>ge relationship for the l device other than a lations will be Depth (m) Flow (l/s) 7.000 6.1 7.500 6.3</pre>									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600	e been based on the Head/Dischar Should another type of contro then these storage routing calcu low (1/s) Depth (m) Flow (1/s) 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 2.2 5.00 5.0	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 9.500 6.7									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000	e been based on the Head/Dischar Should another type of contro then these storage routing calcu low (1/s) Depth (m) Flow (1/s) 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9									
The hydrological calculations have   Hydro-Brake® Optimum as specified   Hydro-Brake Optimum® be utilised   Depth (m) Flow (1/s)   Depth (m) Flow (1/s)   Depth (m) Flow (1/s)   0.100 2.1   0.200 2.5   1.400   0.300 2.6   0.400 2.6   0.500 2.5   0.600 2.3	e been based on the Head/Dischar   Should another type of contro   then these storage routing calcu   low (1/s) Depth (m) Flow (1/s)   2.7 3.000 4.1   2.9 3.500 4.4   3.1 4.000 4.7   3.3 4.500 5.0   3.4 5.000 5.2   3.6 5.500 5.5	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have   Hydro-Brake® Optimum as specified   Hydro-Brake Optimum® be utilised   Depth (m) Flow (1/s) Depth (m) F   0.100 2.1   0.200 2.5   0.300 2.6   0.400 2.6   0.500 2.5   0.600 2.3   0.200 2.400	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu- 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu- 2.7 2.9 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.500 5.5 3.7 6.000 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have   Hydro-Brake® Optimum as specified   Hydro-Brake Optimum® be utilised   Depth (m) Flow (1/s) Depth (m) F   0.100 2.1   0.200 2.5   1.400   0.300 2.6   0.400 2.6   0.500 2.5   0.600 2.3   0.200 2.5   1.800   0.500 2.5   0.600 2.3   2.200   0.800 2.2   2.600	e been based on the Head/Dischar Should another type of contro then these storage routing calcu <b>low (l/s) Depth (m) Flow (l/s)</b> 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have   Hydro-Brake® Optimum as specified   Hydro-Brake Optimum® be utilised   Depth (m) Flow (1/s) Depth (m) F   0.100 2.1   0.200 2.5   1.400   0.300 2.6   0.400 2.6   0.500 2.5   0.600 2.3   0.200 2.5   1.800   0.500 2.5   2.000   0.600 2.3   2.200   0.800 2.2   2.400   1.000 2.5	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu- <b>low (1/s) Depth (m) Flow (1/s)</b> 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu- <b>low (1/s) Depth (m) Flow (1/s)</b> 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu- <b>low (1/s) Depth (m) Flow (1/s)</b> 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be <b>Depth (m) Flow (1/s)</b> 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum as specified Hydro-Brake Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									
The hydrological calculations have Hydro-Brake® Optimum® be utilised invalidated Depth (m) Flow (1/s) Depth (m) F 0.100 2.1 1.200 0.200 2.5 1.400 0.300 2.6 1.600 0.400 2.6 1.800 0.500 2.5 2.000 0.600 2.3 2.200 0.800 2.2 2.400 1.000 2.5 2.600	e been based on the Head/Dischar Should another type of contro- then these storage routing calcu 2.7 3.000 4.1 2.9 3.500 4.4 3.1 4.000 4.7 3.3 4.500 5.0 3.4 5.000 5.2 3.6 5.500 5.5 3.7 6.000 5.7 3.9 6.500 5.9	ge relationship for the 1 device other than a lations will be Depth (m) Flow (1/s) 7.000 6.1 7.500 6.3 8.000 6.5 8.500 6.7 9.000 6.9 9.500 7.1									

Flo Consult UK Ltd			Page 7				
4 Market Square	King James Scho	ol					
Old Amersham	SW Network / Ma	nagement					
Buckinghamshire, HP7 0DQ	Calculations		Micco				
Date 21/10/2020	Designed by MDS						
File King James School - SW	Checked by MDS		Drainage				
	Network 2018 1	1					
	Neework 2010.1.	±					
Storage	tructures for S	storm					
<u></u>							
Porous Car Parl	Manhole: S2, D	S/PN: 1.001					
Infiltration Coefficient Base	m/hr) 0.00000	Width (m)	10.0				
Membrane Percolation (	m/hr) 1000	Length (m)	7.5				
Max Percolation	(1/s) 20.8	Slope (1:X)	0.0				
Po	osity 0.30 F	Evaporation (mm/day)	3				
Invert Lev	1 (m) 122.640 C	Cap Volume Depth (m)	0.300				
<u>Cellular Storag</u>	Manhole: S3, D	S/PN: 2.000					
Inver	Level (m) 121.29	5 Safety Factor 2.0					
Infiltration Coefficient	Base (m/hr) 0.0000	0 Porosity 0.95					
	side (m/nr) 0.0000	0					
Depth (m) Area (m²) Inf. Are	a (m²) Depth (m) A	rea (m²) Inf. Area (	(m²)				
0.000 45.0	0.0 2.600	0.0	0.0				
0.200 45.0	0.0 2.800	0.0	0.0				
0.400 45.0	0.0 3.000	0.0	0.0				
0.600 45.0	0.0 3.200	0.0	0.0				
1.000 0.0	0.0 3.600	0.0	0.0				
1.200 0.0	0.0 3.800	0.0	0.0				
1.400 0.0	0.0 4.000	0.0	0.0				
1.600 0.0	0.0 4.200	0.0	0.0				
1.800 0.0	0.0 4.400	0.0	0.0				
2.000 0.0	0.0 4.600	0.0	0.0				
2.200 0.0	0.0 5.000	0.0	0.0				
		0.0					
Porous Car Parl	Manhole: S4, D	S/PN: 1.002					
Infiltration Coefficient Base	m/hr) 0 00000	Width (m)	10.0				
Membrane Percolation (	m/hr) 1000	Length (m)	27.5				
Max Percolation	(l/s) 76.4	Slope (1:X)	80.0				
Safety	actor 2.0 Depr	ression Storage (mm)	5				
Po	osity 0.30 E	Evaporation (mm/day)	3				
Invert Lev	1 (m) 122.800 C	ap volume Depth (m)	0.300				
Porous Car Park	Manhole: S6/FC,	DS/PN: 1.003					
Infiltration Coefficient Des	m/hr) = 0.0000		10 0				
Membrane Percolation (	m/hr) 1000	Wiath (M) Length (m)	12.0				
Max Percolation (1/s) 33.3 Slope (1:X) 8							
Safety	actor 2.0 Depr	ression Storage (mm)	5				
Po	osity 0.30 E	Evaporation (mm/day)	3				
Invert Lev	1 (m) 122.930 C	Cap Volume Depth (m)	0.300				
	0 0010 T						
©198	<pre>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</pre>						
Flo Consult UK Ltd Page 8							
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------	---------------------------------------	--	--	--	--	--
4 Market Square	King James School						
Old Amersham	SW Network / Management						
Buckinghamshire, HP7 0DQ	Calculations	Mirro					
Date 21/10/2020	Designed by MDS	Drainago					
File King James School - SW	Checked by MDS	Diamage					
Innovyze	Network 2018.1.1						
Date 21/10/2020       Designed by MDS         File King James School - SW       Checked by MDS         Innovyze       Network 2018.1.1         1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm         Areal Reduction Factor 1.000       Additional Flow - % of Total Flow 40.000 Hot Start Level (mm)         Manhole Headloss Coeff (Global)       0.500 Flow per Person per Day (1/per/day)         Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 1 Number of Real Time Controls 0         Synthetic Rainfall Details Rainfall Model       FEH FEH Rainfall Version         Synthetic Rainfall Details Rainfall Model       FEH FEH Riffall Version         Di (1km)       0.308 E (1km)         Di (1km)       0.308 E (1km)         E (1km)       0.308 E (1km)         Margin for Flood Risk Warning (mm)       450.0 Analysis Timestep 2.5 Second Increment (Extended)							
Inerti	a Status OF	rE F					
Profile(s)         Summer and Winter           Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440           Return Period(s) (years)         1, 30, 100           Climate Change (%)         0, 0, 40							
		Water					
US/MH Return Climate PN Name Storm Period Change	First (X) First (Y) First (Z) Ove Surcharge Flood Overflow A	rriow Level ct. (m)					
		· · · · · · · · · · · · · · · · · · ·					
1.000 SI 15 Winter 1 +0% 1.001 S2 15 Winter 1 +0%	30/15 Summer	121.490 121.412					
2.000 S3 60 Winter 1 +0%	30/60 Winter	121.340					
1.002 S4 15 Winter 1 +0%	30/15 Summer	121.405					
3.000 S5 15 Winter 1 +0%	100/120 Winter 30/15 Summer	122.328 121 405					
©198	32-2018 Innovyze						

Flo Consult UK Ltd		Page 9
4 Market Square	King James School	
Old Amersham	SW Network / Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirro
Date 21/10/2020	Designed by MDS	Dcainago
File King James School - SW	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

# 1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	-0.255	0.000	0.05		3.4	OK	
1.001	S2	-0.213	0.000	0.08		4.7	OK	
2.000	S3	-0.250	0.000	0.02		1.1	OK	
1.002	S4	-0.145	0.000	0.03		1.8	OK	
3.000	S5	-0.272	0.000	0.02		4.3	OK	
1.003	S6/FC	-0.108	0.000	0.01		2.3	OK	

Flo Consult UK Ltd		Page 10					
4 Market Square	King James School						
Old Amersham	SW Network / Management						
Buckinghamshire, HP7 0DQ	Calculations	Micco					
Date 21/10/2020	Designed by MDS						
File King James School - SW	Checked by MDS	Digiliada					
Innovyze	Network 2018.1.1						
30 year Return Period Summary of	f Critical Results by Maximum Lev	el (Rank 1)					
	for Storm						
Si	mulation Criteria						
Areal Reduction Factor 1	.000 Additional Flow - % of Total Flo	w 40.000					
Hot Start (mins)	0 MADD Factor * 10m³/ha Storag	je 0.000					
Hot Start Level (mm)	0 Inlet Coefficier	1t 0.800					
Manhole Headloss Coeff (Global) ( Foul Sewage per bectare (1/s) (	.500 Flow per Person per Day (1/per/day	7) 0.000					
Number of Input Hydrogr	aphs 0 Number of Storage Structures 4						
Number of Online Cont	rols 1 Number of Time/Area Diagrams 0						
Number of Offline Cont	rols 0 Number of Real Time Controls 0						
Synthe	tic Rainfall Details						
Rainfall Mode	l FEH						
FEH Rainfall Versic	n 1999						
Site Locatio	$\begin{array}{c} \text{n GB } 41/200 \ 414500 \ \text{SE } 1/200 \ 14500 \\ -0 \ 0.26 \end{array}$						
D1 (1km	u) 0.397						
D2 (1km	0.421						
D3 (1km	0.308						
E (1km E (1km	u) 0.308						
F (IKR Cv (Summer	() 2.388 () 0.750						
Cv (Winter	0.840						
		0					
Margin for Flood Risk Warn	ing (mm) 450. Timester 2 5 Second Increment (Extended	. 0					
DT	S Status	DN					
DV	D Status OF	FF					
Inerti	a Status OF	ſΈ					
Profile(s)	Summer and Winte	er					
Duration(s) (mins) 1	5, 30, 60, 120, 240, 360, 480, 960, 144	10					
Return Period(s) (years) Climate Change (%)	1, 30, 10	10					
	· · · · · · · · · · · · · · · · · · ·						
		Water					
US/MH Return Climate	First (X) First (Y) First (Z) Over Surcharge Flood Overflow Z	erriow Level					
	-itomatyc fioda Overiidw F	(m/					
1.000 S1 15 Winter 30 +0%	100/15 Summer	121.649					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30/15 Summer 30/60 Winter	121.636 121.619					
1.002 S4 15 Winter 30 +0%	30/15 Summer	121.619					
3.000 S5 15 Winter 30 +0%	100/120 Winter	122.349					
1.003 S6/FC 15 Winter 30 +0%	30/15 Summer	121.636					
©198	32-2018 Innovyze						

Flo Consult UK Ltd		Page 11
4 Market Square	King James School	
Old Amersham	SW Network / Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirro
Date 21/10/2020	Designed by MDS	Desinado
File King James School - SW	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

# 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	-0.096	0.000	0.16		10.2	OK	
1.001	S2	0.011	0.000	0.28		16.8	SURCHARGED	
2.000	S3	0.028	0.000	0.04		2.0	SURCHARGED	
1.002	S4	0.069	0.000	0.04		2.3	SURCHARGED	
3.000	S5	-0.251	0.000	0.06		13.7	OK	
1.003	S6/FC	0.123	0.000	0.01		2.5	SURCHARGED	

Flo Consult UK Ltd		Flo Consult UK Ltd						
4 Market Square		King James S	chool					
Old Amersham		SW Network /	' Manageme	ent		~		
Buckinghamshire, HP7	0 DQ	Calculations	5		Mic	(U		
Date 21/10/2020		Designed by	MDS					
File King James School	L – SW	Checked by M	IDS		DICI	inage		
Innovyze		Network 2018	8.1.1					
100 year Return Peri	od Summary	<u>of Critical</u> 1) for Storm	Results b	y Maximum	Level	(Rank		
Simulation Criteria         Areal Reduction Factor 1.000       Additional Flow - % of Total Flow 40.000         Hot Start (mins)       0       MADD Factor * 10m³/ha Storage 0.000         Hot Start Level (mm)       0       Inlet Coefficient 0.800         Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000       0.000         Foul Sewage per hectare (l/s) 0.000       Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Online Controls 1 Number of Time/Area Diagrams 0       Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details       Rainfall Model       FEH         FEH Rainfall Version       1999       Site Location GB 417200 414500 SE 17200 14500         C (11m)       0.021								
	) ) ) ) )		0.397 0.421 0.308 0.308 2.388 0.750 0.840					
Margin for Flood Risk Warning (mm) Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status Inertia Status Profile(s) Profile(s) Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) Climate Change (%) 0 0 40								
US/MH Re PN Name Storm Pe	turn Climate riod Change	First (X) Surcharge	First (Y) Flood	First (Z) ( Overflow	Overflow Act.	Water Level (m)		
1.000 S1 240 Winter 1.001 S2 240 Winter 2.000 S3 240 Winter 1.002 S4 240 Winter 3.000 S5 240 Winter 1.003 S6/FC 240 Winter	100       +40%         100       +40%         100       +40%         100       +40%         100       +40%         100       +40%         100       +40%	100/15 Summer 30/15 Summer 30/60 Winter 30/15 Summer 100/120 Winter 30/15 Summer				122.752 122.751 122.752 122.752 122.752 122.751		
	©198	32-2018 Innov	yze					

Flo Consult UK Ltd		Page 13
4 Market Square	King James School	
Old Amersham	SW Network / Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirm
Date 21/10/2020	Designed by MDS	Dcainago
File King James School - SW	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

### 100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m ³ )	Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	1.007	0.000	0.06		3.9	FLOOD BISK	
1.001	s2	1.126	0.000	0.11		6.7	FLOOD RISK	
2.000	s3	1.162	0.000	0.05		2.5	FLOOD RISK	
1.002	S4	1.202	0.000	0.05		2.8	FLOOD RISK	
3.000	S5	0.152	0.000	0.02		5.1	SURCHARGED	
1.003	S6/FC	1.238	0.000	0.02		3.0	SURCHARGED	

©1982-2018 Innovyze

4 Market Square         King James School           0ld Amersham         SW Network / Management           Buckinghamshire, HP7 ODQ         Designed by MDS           Date 21/10/2020         Designed by MDS           Date 21/10/2020         Network 2018.1.1           Innovyze         Network 2018.1.1           STORM SEWER DESIGN by the Modified Rational Method         Design Criteria for Storm           File King James School - SW         Checked by MDS           Innovyze         Network 2018.1.1           STORM SEWER DESIGN by the Modified Rational Method         Design Criteria for Storm           File King James School - SW         Checked by MDS           Innovyze         Network 2018.1.1           STORM SEWER DESIGN by the Modified Rational Method         Design Criteria for Storm           File King James School - SW         Cikm 0.337           C (lkm)         0.308           FUR Sainfall Warsion         0.309           Ste Location G2 417200 414500 SE 17200 14500           Return Period (years)         100           Maximum Racking Reight (m)         0.300           Volumetric Runoff Coeff.         0.750           Min Design Depth for Optimisation (m)         1.200           Min Schep For Optimisation (m)         1.200	Flo Consult UK Ltd		Page 1				
Old Amersham       SW Network / Management         Buckinghamshire, HP7 0DQ       Designed by MDS         File King James School - SW       Checked by MDS         Innovyze       Network 2018.1.1         STORM SEWER DESIGN by the Modified Rational Method         Designed by MDS         Innovyze         Network / Management         STORM SEWER DESIGN by the Modified Rational Method         Designed by MDS         Innovyze         Network / Management         STORM SEWER DESIGN by the Modified Rational Method         Designed by MDS         File King James School - SW         Stecondot State S	4 Market Square	King James School					
Buckinghamshire, HP7 0DQ Calculations Date 21/10/2020 Designed by MDS Designed by MDS Checked by MDS Designed Triteria for Storm Pipe Sires STANDARD Manhole Sizes STANDARD TER Rainfall Model Design Criteria for Storm Pipe Sire Continue (Version 1993) Site Location GB 417200 414500 SE 17200 14500 C (1km) 0.308 F (1km) 0.300 F (1km) 0.000 Volumetric Runoff Coeff. 0.750 Maximum Rainfor Medge (1/s/ha) 0.000 Maximum Rainfor Medge (1/s/ha) 0.000 Min Usel for Auto Design only (w/s) 1.200 Min Slope for Optimisation (112X) 500 Min Slope for Optimisation (12X) 500 Min Slope for O	Old Amersham	SW Network / Management					
Date 21/10/2020 File King James School - SW Checked by MDS File King James School - SW Checked by MDS Finnovyze Provide the set of the	Buckinghamshire, HP7 0DQ	Calculations	Micco				
File King James School - SW       Checked by MDS         Innovyze       Network 2018.1.1         STORM SEWER DESIGN by the Modified Rational Method         Design Criteria for Storm         File Size STANDARD Manhole Sizes STANDARD         FEE Rainfall Model         Return Period (years)       100         FEE Rainfall Model         Return Period (years)       100         FEE Rainfall Model         Return Period (years)       100         Site Location GB 417200 414500 SE 17200 14500         C (1km)       0.026         C (1km)       0.020         C (1km       0.020         Maximum Time of Concentration (mins)       3         C (1km       0.000	Date 21/10/2020	Designed by MDS					
Innovyze         Network 2018.1.1           STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm           Fige Sizes STANDARD Menhole Sizes STANDARD FEH Rainfall Model           FEH Rainfall Model           Return Foriod (years)           100           FEH Rainfall Model           Return Foriod (years)           100           FEH Rainfall Model           Return Foriod (years)           0           Clamp           0           Clamp           0           Clamp           Advance (Jk/ma)           0           Maximum Rainfall (mm/hr)           500           Maximum Rainfall (mm/hr)            0 <td col<="" td=""><td>File King James School - SW</td><td>Checked by MDS</td><td>Digiliga</td></td>	<td>File King James School - SW</td> <td>Checked by MDS</td> <td>Digiliga</td>	File King James School - SW	Checked by MDS	Digiliga			
STORM SEWER DESIGN by the Modified Rational Method           Design Criteria for Storm           Design Criteria for Storm           FIR Rainfall Model           FIR Rainfall Model           Return Period (years)         100           DESTEM DATE Manhole Sizes STANDARD           DESTEM DATE Manhole Sizes STANDARD           FIR Rainfall Model           Return Period (years)         100           DESTEM DATE Manhole Sizes STANDARD           DESTEM DATE MANHOLE STANDARD            DESTEM DATE MANHOLE STANDARD	Innovyze	Network 2018.1.1					
STORM SEWER DESIGN by the Modified Rational Method           Design Criteria for Storm           Fipe Sizes STANDARD Manhole Sizes STANDARD           FEH Rainfall Model           Return Period (years)           100           FEH Rainfall Works           Import State Incretion (BE 417200 414500 SE 17200 14500           C (1km)           O (1km)           O (1km)           C (1km)           O (1km) <td< td=""><td></td><td></td><td></td></td<>							
Design Criteria for Storm           Figs SIZES STANDARD Manhole Sizes STANDARD           SIZE STANDARD Manhole Sizes STANDARD           Colspan="2">SIZE STANDARD Manhole Sizes STANDARD           Colspan="2">SIZE STANDARD           SIZE STANDARD           Colspan="2">SIZE STANDARD           SIZE STANDARD           SIZE STANDARD           SIZE STANDARD           STANDARD           STANDARD           STANDARD           STANDARD </td <td>STORM SEWER DESIGN</td> <td>by the Modified Rational Method</td> <td></td>	STORM SEWER DESIGN	by the Modified Rational Method					
Fipe Sizes STANDARD Manhole Sizes STANDARD           FEH Rainfall Model           Return Period (years)         100           TEBL Rainfall Version         1999           Site Location GB 417200 414500 SE 17200 14500         0           C (LMm)         -0.026           D1 (LMm)         0.397           D2 (LMm)         0.308           E (LMm)         0.308           E (LMm)         0.308           F (LM)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Backdrop Height (m)         0.000           Volumetric Runoff Coeff.         0.750           PIP (%)         100           Minimum Backdrop Height (m)         0.000           Min Pesign Depth for Optimisation (ix)         1.00           Min Slope for Optimisation (ix)         500           D2 simulation Criteria for Storm         1.00           Min Slope for Optimisation (ix)         500           Designed with Level Soffits         5           Simulation Criteria for Storm         0.000           Hot Start (mins)         0         1.01           Maximum Packdrop Height (m)         0.0100         0.000           Hot Start (mins)         0         0	Design	Criteria for Storm					
FEH Rainfall Model           Return Period (years)         100           FEH Rainfall Version         1999           Site Location GB 417200 414500 SE 17200         14500           C (lkm)         -0.26           D1 (lkm)         0.337           D2 (lkm)         0.421           D3 (lkm)         0.308           F (lkm)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (mins)         30           Foul Sewage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           Maximum Dackdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Minimum Backdrop Height (m)         0.000           Maximum Dackdrop Height (m)         0.000           Min Slope for Optimisation (lt X)         500           Designed with Level Soffits         Simulation Criteria for Storm           Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000           Areal Reduction Factor 1.000         MDD Factor * 10m?/ha Storage 0.000           Hot Start (mins)         0         Intel coefficient 0.800           Bot Start Level (m)	Pipe Sizes STA	NDARD Manhole Sizes STANDARD					
Return Period (years)         100           FEH Rainfall Version         1999           Site Location GE 417200 414500 SE 17200 14500         -0.026           D1 (lkm)         0.337           D2 (lkm)         -0.026           D1 (lkm)         0.337           D2 (lkm)         0.421           D3 (lkm)         0.308           F (lkm)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (mins)         30           F Oll Sewage (l/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Min Petph for Optimisation (1:X)         500           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           D1 Intel Coefficient 0.300           Hot Start (mins)         0           Mathod Scoeff (Job)         0.000           Min Vel for Auto Design only (m/s)         Run Time (mins)           D2         Intel Coefficient 0.300           Hot Start (mins)         0           Foul Sewage per hectare (l/s)<	FE	EH Rainfall Model					
FEH Rainfall Version       1939         Site Location GE 417200 414500 SE 17200 14500       C (1km)       -0.026         DI (1km)       0.397         D2 (1km)       0.421         D3 (1km)       0.308         E (1km)       0.308         F (1km)       0.308         F (1km)       0.308         F (1km)       0.308         Ful Sewage (1/s/ha)       0.000         Volumetric Runoff Coeff.       0.750         PUP (8)       100         Add Flow / Climate Change (8)       40         Minimum Backdrop Height (m)       0.000         Maximum Rackdrop Height (m)       0.000         Min Vel for Auto Design only (m/s)       1.00         Min Slope for Optimisation (1:X)       500         Designed with Level Soffits         Simulation Criteria for Storm         Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000         Areal Reduction Factor 1.000       MADD Factor * 10m*/ha Storage 0.000         Hot Start (mins)       0       Inlet Coefficient 0.800         Hot Start (mins)       0       Number of coeff 0.750         Number of Online Controls 1       Number of Storage Structures 4         <	Return Peri	od (years)	100				
c         1/200         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         314300         3143000         3143000         3143000 <td>FEH Rainfa</td> <td>11 Version</td> <td>1999</td>	FEH Rainfa	11 Version	1999				
D1 (1km)         0.387           D2 (1km)         0.421           D3 (1km)         0.308           E (1km)         0.308           F (1km)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (miss)         30           Found Sevage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Wel for Auto Besign only (m/s)         1.00           Min Vel for Auto Besign only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits         Simulation Criteria for Storm           Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000           Areal Reduction Factor 1.000         MADD Factor * 10m²/ha Storage 0.000           Hot Start Level (min 0         Olower Person per Day (1/per/day) 0.000           Manbe Headloss Coeff (Global) 0.500         Run Time (mins) 1           Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Online Controls 1 Number of Time/Area Diagrams 0	Sit.	C (1km) -(	.4500 1 026				
D2 (1km)         0.421           D3 (1km)         0.308           E (1km)         0.308           F (1km)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (mins)         30           Foul Sewage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (8)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Design Depth for Optimisation (m)         1.200           Min Vel for Auto Design only (m/s)         1.00           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           D3 Start Level (mm)         Inlet Coefficient 0.800           Hot Start (mins)         O         Inlet Coefficient 0.800           Hot Start (mins)         O         Inlet Coefficient 0.800           Hot Start Level (mm)         O toutput Interval (mins)         1		D1 (1km)	.397				
D3 (1km)         0.308           E (1km)         0.308           F (1km)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (mins)         30           Foul Sewage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Design Depth for Optimisation (1:X)         500           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits         500           Mareal Reduction Factor 1.000         MADD Factor * 10m*/ha Storage 0.000           Hot Start (mins)         0         Inlet Coefficient 0.800           Hot Start (mins)         0         Inlet Coefficient 0.800           Manhole Headloss Coeff (Global) 0.500         Run Time (mins)         1           Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Offline Controls 0 Number of Time/Area Diagrams 0           Number of Offline Controls 0 Number of Time/Area Diagrams 0         Number of Offline Controls 0 Number of Time/Area Diagrams 0     <		D2 (1km) 0	.421				
E (lkm)         0.308           F (lkm)         2.388           Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (mins)         30           Foul Sewage (l's/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Maximu Backdrop Height (m)         0.000           Min Design Depth for Optimisation (m)         1.200           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits         500           Areal Reduction Factor 1.000         MADD Factor * 10m ^{-//} hA Storage 0.000           Hot Start Level (mm)         0 Flow per Person per Day (l/per/day) 0.000           Manhole Headloss Coeff (Global) 0.500         Run Time (mins)           Foul Sewage per hectare (l/s) 0.000         Output Interval (mins)         1           Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Offline Controls 1 Number of Time/Area Diagrams 0           Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details           Rainfall Model         FEH           Retu		D3 (1km) (	.308				
Maximum Rainfall (mm/hr)         50           Maximum Time of Concentration (mins)         30           Foul Sewage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PINP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Design Depth for Optimisation (m)         1.200           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits         500           Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000           Areal Reduction Factor 1.000         MADD Factor * 10m³/ha Storage 0.000           Hot Start (mins)         0         Inlet Coefficient 0.800           Hot Start Level (mm)         0 Flow per Person per Day (1/per/day) 0.000           Manhole Headloos Coeff (Global) 0.500         Run Time (mins)         1           Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Online Controls 1 Number of Time/Area Diagrams 0           Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details           Rainfall Model         FEH           Return Per		E (1km) (1km)	.308				
Maximum Time of Concentration (mins)         30           Foul Sewage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Design Depth for Optimisation (m)         1.200           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits         500           Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000           Areal Reduction Factor 1.000         MADD Factor + 10m*/ha Storage 0.000           Hot Start (mins)         0         Inlet Coefficient 0.800           Hot Start Level (mm)         0 Flow per Person per Day (1/per/day) 0.000           Manhole Headloss Coeff (Global) 0.500         Run Time (mins)         1           Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Online Controls 1 Number of Time/Area Diagrams 0         Number of Offline Controls 0 Number of Real Time Controls 0           Synthetic Rainfall Details         E         FEH         Return Period (years)         100           FEH Reinfall Version         1999         Sit	Maximum Bainfa	F (IKM) 2	50				
Foul Sewage (1/s/ha)         0.000           Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Design Depth for Optimisation (m)         1.200           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits           Volumetric Runoff Coeff 0.750           Additional Flow - % of Total Flow 40.000           Areal Reduction Factor 1.000         MADD Factor * 10m³/ha Storage 0.000           Hot Start (mins)         0         Inlet Coefficient 0.800           Hot Start Level (mm)         0 Flow per Person per Day (1/per/day) 0.000           Manhole Headloss Coeff (Global) 0.500         Run Time (mins)         1           Number of Input Hydrographs 0 Number of Storage Structures 4         Number of Ofline Controls 1 Number of Time/Area Diagrams 0         Number of Offline Controls 0           Synthetic Rainfall Details           Rainfall Model         FEH           Return Period (years)         100           FEH Rainfall Version         1999           Site Location GB 417200	Maximum Time of Concentrat.	ion (mins)	30				
Volumetric Runoff Coeff.         0.750           PIMP (%)         100           Add Flow / Climate Change (%)         40           Minimum Backdrop Height (m)         0.000           Maximum Backdrop Height (m)         0.000           Min Design Depth For Optimisation (m)         1.200           Min Vel for Auto Design only (m/s)         1.00           Min Slope for Optimisation (1:X)         500           Designed with Level Soffits           Simulation Criteria for Storm           Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000           Areal Reduction Factor 1.000         MADD Factor * 10m³/ha Storage 0.000           Hot Start (mins)         0         Inlet Coefficient 0.800           Foul Sewage per hectar (1/s) 0.000         Output Interval (mins)         1           Number of Input	Foul Sewage	e (l/s/ha) (	.000				
PIMP (%)       100         Add Flow / Climate Change (%)       40         Minimum Backdrop Height (m)       0.000         Min Design Depth for Optimisation (m)       1.200         Min Vel for Auto Design only (m/s)       1.00         Min Slope for Optimisation (1:X)       500         Designed with Level Soffits         Simulation Criteria for Storm         Volumetric Runoff Coeff 0.750       Additional Flow - % of Total Flow 40.000         Areal Reduction Factor 1.000       MADD Factor * 10m*ha Storage 0.000         Hot Start (mins)       0       Inlet Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 4       Number of Ofline Controls 1 Number of Real Time Controls 0         Synthetic Rainfall Details       E       E         Return Period (years)       100         FEH Rainfall Wordi       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       C (1km)         D 3 (1	Volumetric Run	off Coeff. (	.750				
Add Filow / Cillmate Change (%)       40         Minimum Backdrop Height (m)       0.000         Maximum Backdrop Height (m)       0.000         Min Design Depth for Optimisation (m)       1.200         Min Vel for Auto Design only (m/s)       1.00         Min Slope for Optimisation (1:X)       500         Designed with Level Soffits         Simulation Criteria for Storm         Volumetric Runoff Coeff 0.750         Additional Flow - % of Total Flow 40.000         Areal Reduction Factor 1.000         MADD Factor * 10m³/ha Storage 0.000         Hot Start Level (min)         O Flow per Person per Day (l/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (l/s) 0.000         Mumber of Input Hydrographs 0 Number of Storage Structures 4       Number of Online Controls 1 Number of Time/Area Diagrams 0         Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details         Rainfall Model       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500	Idd Flow ( Climate	PIMP (%)	100				
Maximum Backdrop Height (m) 0.000 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) 0.397 D2 (1km) 0.308 E (1km) 0.308	Add Flow / Climate	Change (3) Height (m)	40				
Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) 0.397 D2 (1km) 0.308 E (1km) 0.308	Maximum Backdrop	Height (m)	0.000				
Min Vel for Auto Design only (m/s) Min Slope for Optimisation (1:X) Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) -0.026 D1 (1km) 0.397 D2 (1km) 0.308 E (1km) 0.308	Min Design Depth for Optimi	sation (m) 1	.200				
Min slope for optimization (TX)       500         Designed with Level Soffits         Simulation Criteria for Storm         Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) 1         Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details         Rainfall Model       FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) -0.026 D1 (1km) 0.397 D2 (1km) 0.308 E (1km) 0.308	Min Vel for Auto Design	only (m/s)	1.00				
Simulation Criteria for Storm         Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1         Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details         Rainfall Model       FEH Return Period (years)         Site Location GB 417200 414500 SE 17200 14500 C (1km)       -0.026 D1 (1km)         D1 (1km)       0.308         E (1km)       0.308	Design	ed with Level Soffits	500				
Volumetric Runoff Coeff 0.750       Additional Flow - % of Total Flow 40.000         Areal Reduction Factor 1.000       MADD Factor * 10m³/ha Storage 0.000         Hot Start (mins)       0       Inlet Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins) 60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins) 1         Number of Input Hydrographs 0 Number of Storage Structures 4       Number of Online Controls 1 Number of Time/Area Diagrams 0         Number of Offline Controls 0 Number of Real Time Controls 0       Synthetic Rainfall Details         Rainfall Model       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       C (1km)         0 2 (1km)       0.308	Simulati	on Criteria for Storm					
Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000 Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) -0.026 D1 (1km) 0.397 D2 (1km) 0.308 E (1km) 0.308	Simulation						
Head Neddetton rector 1.000       Habb rector 1.000       Intel Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day)       0.000         Manhole Headloss Coeff (Global)       0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 4       Number of Offline Controls 1 Number of Time/Area Diagrams 0       1         Number of Offline Controls 0 Number of Real Time Controls 0       Synthetic Rainfall Details       1         Rainfall Model       FEH       100         FEH Rainfall Version       1999       100         Site Location GB 417200 414500 SE 17200 14500       0.307         D2 (1km)       0.308         E (1km)       0.308	Volumetric Runoff Coeff ( Areal Reduction Easter 1	0.150 Additional Flow - % of Total F	10W 40.000				
Hot Start Level (mm)       0 Flow per Person per Day (1/per/day)       0.000         Manhole Headloss Coeff (Global)       0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of Input Hydrographs       0 Number of Storage Structures 4       1         Number of Online Controls 1 Number of Time/Area Diagrams 0       1         Number of Offline Controls 0 Number of Real Time Controls 0       0         Synthetic Rainfall Details       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       0         C (1km)       0.397         D2 (1km)       0.421         D3 (1km)       0.308	Hot Start (mins)	0 Inlet Coeffieci	ent 0.800				
Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 4       1         Number of Online Controls 1 Number of Time/Area Diagrams 0       1         Number of Offline Controls 0 Number of Real Time Controls 0       1         Synthetic Rainfall Details         Rainfall Model       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       0.397         D2 (1km)       0.421         D3 (1km)       0.308	Hot Start Level (mm)	0 Flow per Person per Day (l/per/d	ay) 0.000				
Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 4       Number of Online Controls 1 Number of Time/Area Diagrams 0       0         Number of Offline Controls 0 Number of Real Time Controls 0       Synthetic Rainfall Details       0         Rainfall Model       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       0         C (1km)       -0.026         D1 (1km)       0.397         D2 (1km)       0.308         E (1km)       0.308	Manhole Headloss Coeff (Global) (	0.500 Run Time (mi	ns) 60				
Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 <u>Synthetic Rainfall Details</u> Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) -0.026 D1 (1km) 0.397 D2 (1km) 0.421 D3 (1km) 0.308 E (1km) 0.308	Foul Sewage per hectare (1/s) (	).000 Output Interval (mi	ns) 1				
Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 417200 414500 SE 17200 14500 C (1km) -0.026 D1 (1km) 0.397 D2 (1km) 0.421 D3 (1km) 0.308 E (1km) 0.308	Number of Input Hydrogr	aphs 0 Number of Storage Structures 4					
Number of Offline Controls 0 Number of Real Time Controls 0         Synthetic Rainfall Details         Rainfall Model       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       C (1km)         C (1km)       -0.026         D1 (1km)       0.397         D2 (1km)       0.308         E (1km)       0.308	Number of Online Cont	rols 1 Number of Time/Area Diagrams 0					
Synthetic Rainfall Details           Rainfall Model         FEH           Return Period (years)         100           FEH Rainfall Version         1999           Site Location GB 417200 414500 SE 17200 14500         -0.026           D1 (1km)         -0.397           D2 (1km)         0.421           D3 (1km)         0.308	Number of Offline Cont	rols 0 Number of Real Time Controls 0					
Rainfall Model       FEH         Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       0         C (1km)       -0.026         D1 (1km)       0.397         D2 (1km)       0.421         D3 (1km)       0.308         E (1km)       0.308	Synthetic Rainfall Details						
Return Period (years)       100         FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500       -0.026         C (1km)       -0.397         D1 (1km)       0.397         D2 (1km)       0.308         E (1km)       0.308	Rainfall Mod	el FEH					
FEH Rainfall Version       1999         Site Location GB 417200 414500 SE 17200 14500         C (1km)       -0.026         D1 (1km)       0.397         D2 (1km)       0.421         D3 (1km)       0.308         E (1km)       0.308	Return Period (year	s) 100					
Site Location GB 417200 414500 SE 17200 14500         C (1km)       -0.026         D1 (1km)       0.397         D2 (1km)       0.421         D3 (1km)       0.308         E (1km)       0.308	FEH Rainfall Versi	on 1999					
C (1km)     -0.026       D1 (1km)     0.397       D2 (1km)     0.421       D3 (1km)     0.308       E (1km)     0.308	Site Locati	on GB 417200 414500 SE 17200 14500					
D2 (1km) D2 (1km) D3 (1km) E (1km) D3 0.308	C (Iki או) ות	m) -U.U26 m) 0.397					
D3 (1km) 0.308 E (1km) 0.308	D2 (1k)	D2 (1km) 0.421					
E (1km) 0.308	D3 (1km) 0.308						
	E (1km) 0.308						
$\bigcirc 1982 - 2018$ Tapatriza							
Θτρος-ζοτο τυπολλέθ	0198	52-2010 IIIIOVY2e					

Flo Consult UK Ltd	Page 2	
4 Market Square	King James School	
Old Amersham	SW Network / Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirro
Date 21/10/2020	Designed by MDS	Dcainago
File King James School - SW	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

#### Synthetic Rainfall Details

		F	(1km)	2.388
	Summe	r S	Storms	Yes
	Winte	r S	Storms	No
	Cv	(Sı	ummer)	0.750
	Cv	(W:	inter)	0.840
Storm	Duratio	n	(mins)	30

Flo Consult UK Ltd					Page	e 3		
4 Market Square	King Ja	ames Sc	hool					
Old Amersham	SW Net	work /	Managem	ent				
Buckinghamshire, HP7 ODQ	Calculations				Mic			
Date 21/10/2020	Designed by MDS							
File King James School - SW	Checke	d by MD	S		Ulc	maye		
Innovyze	Networ	k 2018.	1.1					
100 year Return Period Summary	of Crit	cical Re	esults }	oy Maximum	n Level	(Rank		
1) for Storm								
c i r	mulation	Critoria						
Areal Reduction Factor 1	.000 A	dditiona	l Flow -	% of Total	Flow 40.	000		
Hot Start (mins)	0	MADD	Factor *	10m³/ha Sto	orage 0.	000		
Hot Start Level (mm)	0		Inl	et Coeffied	cient 0.	800		
Manhole Headloss Coeff (Global) 0	.500 Flo	w per Pe	rson per	Day (l/per/	'day) 0.	000		
Four Sewage per nectare (175) 0	.000							
Number of Input Hydrogr	aphs 0 N	umber of	Storage	Structures	4			
Number of Online Cont	rols 1 N	umber of	Time/Are	a Diagrams	0			
Number of Offline Cont	TOIS U N	umber oi	Real Tim	le Controls	0			
Synthe	tic Rain	fall Deta	ails					
Rainfall Mode	1			FEH				
FEH Rainfall Versio	n n CD 417	200 4145	00 00 170	1999				
C (1km	) GD 417.	200 4145	00 SE 1/2	-0.026				
D1 (1km	.)			0.397				
D2 (1km	1)			0.421				
D3 (1km	l)			0.308				
E (IKM F (1km	L)			2 388				
Cv (Summer	·)			0.750				
Cv (Winter	·)			0.840				
Margin for Flood Rick Warn	ing (mm)			1	150 0			
Analysis	Timestep	2.5 Sec	ond Incre	ement (Exter	ided)			
DT	S Status				ON			
DVD Status 0				OFF				
Inerti	a Status				OFF			
	Profile(:	s) Summe	r and Wir	ter				
Duration(s) (mins) 360								
Climate Change (%) 40								
			Wator	Surchargod	Floodod			
US/MH		US/CL	Level	Depth	Volume	Flow /		
PN Name Event		(m)	(m)	(m)	(m ³ )	, Cap.		
1 000 S1 360 minute 100 mars mint	or T1100	123 040	100 716	0 071	0 000	0 05		
1.001 S2 360 minute 100 year Wint	er I+40%	123.040	122.715	1.090	0.000	0.03		
2.000 S3 360 minute 100 year Wint	er I+40%	123.110	122.716	1.126	0.000	0.04		
1.002 S4 360 minute 100 year Wint	er I+40%	123.200	122.716	1.166	0.000	0.05		
3.000 S5 360 minute 100 year Wint	er I+40% or $T+10$ %	123.330	122.716	0.116	0.000	0.02		
1.005 SOFE SOU MINULE IOU YEAR WINT	CI I⊤4U∛	123.330	122./13	1.202	0.000	0.02		
	32-2019	Tnnoviv	70					
0198		тшолд	2C					

Flo Consult UK Ltd		Page 4
4 Market Square	King James School	
Old Amersham	SW Network / Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirm
Date 21/10/2020	Designed by MDS	Dcainago
File King James School - SW	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

### 100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

				Pipe	
	US/MH	Overflow	Discharge	Flow	
PN	Name	(l/s)	Vol (m³)	(l/s)	Status
1.000	S1		26.745	3.0	FLOOD RISK
1.001	S2		45.622	5.0	FLOOD RISK
2.000	s3		0.090	2.5	FLOOD RISK
1.002	S4		63.253	2.7	SURCHARGED
3.000	S5		32.822	3.8	SURCHARGED
1.003	S6/FC		95.977	3.0	SURCHARGED

©1982-2018 Innovyze