wardell-armstrong.com

ENERGY AND CLIMATE CHANGE ENVIRONMENT AND SUSTAINABILITY INFRASTRUCTURE AND UTILITIES LAND AND PROPERTY MINING, QUARRYING AND MINERAL ESTATES WASTE RESOURCE MANAGEMENT

KEYLAND DEVELOPMENTS LTD

FORMER NORTH BIERLEY WWTW

PHASE II GEO-ENVIRONMENTAL ASSESSMENT

NOVEMBER 2017

your earth our world

DATE ISSUED:	November 2017
JOB NUMBER:	SH10534
REPORT NUMBER:	RPT-002C

KEYLAND DEVELOPMENTS LTD

FORMER NORTH BIERLEY WWTW PHASE II GEO-ENVIRONMENTAL ASSESSMENT

PREPARED BY:

M Kelly	Senior Environmental Geologist	
J Lymer	Senior Environmental Chemist	
REVIEWED BY:		
J A Shaw	Technical Director	
APPROVED BY:		

G P Whitmore Technical Director

Document Record

Issue No.	Date	Details
1	22 June 2012	Draft submitted to client for comment
2	13 November 2015	Revised layout and updated risk assessment
3	1 December 2017	Revised layout and updated risk assessment

This report has been prepared by Wardell Armstrong LLP with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and Wardell Armstrong LLP accept no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced without the prior written approval of Wardell Armstrong LLP.

Wardell Armstrong is the trading name of Wardell Armstrong LLP, Registered in England No. OC307138.

Registered office: Sir Henry Doulton House, Forge Lane, Etruria, Stoke-on-Trent, ST1 5BD, United Kingdom

UK Offices: Stoke-on-Trent, Birmingham, Cardiff, Carlisle, Edinburgh, Greater Manchester, London, Newcastle upon Tyne, Penryn, Sheffield, Truro, West Bromwich. International Offices: Almaty, Moscow

ENERGY AND CLIMATE CHANGE ENVIRONMENT AND SUSTAINABILITY INFRASTRUCTURE AND UTILITIES LAND AND PROPERTY MINING AND MINERAL PROCESSING MINERAL ESTATES AND QUARRYING WASTE RESOURCE MANAGEMENT

CONTENTS

1	INTRODUCTION				
	1.1	Instruction	6		
	1.2	Site Location	6		
	1.3 Purpose and Basis of Report 6				
	1.4	Proposed Site Use	6		
2	PRE\	/IOUS INVESTIGATIONS	7		
	2.1	Introduction	7		
	2.2	Preliminary Conceptual Site Model	7		
3	GEO	LOGICAL AND HYDROGEOLOGICAL SETTING	9		
	3.1	Geology	9		
	3.2	Hydrogeology	9		
	3.3	Hydrology	10		
	3.4	Mining	11		
4	SITE	INVESTIGATION	14		
	4.1	Introduction	14		
	4.2	Scope	14		
	4.3	Cable Percussion Boreholes	15		
	4.4	Rotary Open-Hole Boreholes	15		
	4.5	Window Sample Boreholes	16		
	4.6	Trial Pit Excavations	16		
	4.7	Ground Gas and Groundwater Monitoring Standpipes	16		
	4.8	Sampling and Testing	17		
	4.9	Quality Assurance and Quality Control	19		
	4.10	Limitations of Site Investigation	19		
5	RESU	JLTS OF SITE INVESTIGATION	20		
	5.1	Ground Conditions	20		
	5.2	Groundwater	21		
	5.3	Soakaway Tests	22		
	5.4	Ground Gas	23		
	5.5	Observations of contamination	23		
	5.6	Shallow mining	23		
6	GUI	DANCE ON CONTAMINATION RISK ASSESSMENT	24		
	6.1	Introduction	24		
	6.2	General Soil Contamination Guidance	24		
	6.3	Statistical analysis	26		

	6.4	General Water Contamination Guidance				
7	GENI	ERIC QUANTITATIVE RISK ASSESSMENT	28			
	7.1	Soil Results	28			
	7.2	7.2 Human Health - occupiers				
	7.3	Human Health – Construction Workers	31			
	7.4	Ecology – Future Landscaped Areas	32			
	7.5	Groundwater Results	32			
	7.6	Leachate Results	35			
	7.7	Ground Gas	36			
	7.8	Radon Gas	38			
	7.9	Building Materials	39			
8	GEO	FECHNICAL RESULTS	41			
	8.1	Introduction	41			
	8.2	Made Ground	41			
	8.3	Natural Materials - Clay	44			
	8.4	Natural Materials - Gravel	47			
	8.5	Standard/Cone Penetration Testing	48			
9	REVI	SED CONCEPTUAL SITE MODEL	50			
	9.1	Introduction	50			
	9.2	Contamination Sources	50			
	9.3	Pathways	50			
	9.4	Receptors	50			
	9.5	Summary	51			
10	CON	CLUSIONS	52			
	10.1	General	52			
	10.2	Human Health	52			
	10.3	Surface Water and Groundwater	52			
	10.4	Buildings and Property	53			
	10.5	Ecology	55			
	10.6	Coal Mining	55			
	10.7	Geotechnical and foundation design	56			
11	RECO	OMMENDATIONS	58			
	11.1	Contamination	58			
	11.2	Mining	58			
	11.3	Ground Gas	58			

APPENDICES

Appendix I	Standard Terms and Conditions and Limitations to Report
Appendix II	Coal Authority Report
Appendix III	Cable Percussion and Rotary Open-Hole Borehole Logs
Appendix IV	Window Sample Borehole Logs
Appendix V	Trial Pit Logs
Appendix VI	Geochemical Laboratory Results
Appendix VII	Statistical Analysis of Geochemical Results
Appendix VIII	Geotechnical Laboratory Results
Appendix IX	Soakaway Test Results
Appendix X	Gas Monitoring Results

DRAWINGS

Drawing No	Title	Scale
SH10534-001	Site Location Plan	1:50,000
SH10534-008	Site Investigation Plan	1:2,500
SH10534-009	Revised Conceptual Site Model	NTS

1 INTRODUCTION

1.1 Instruction

1.1.1 This report is prepared in accordance with instruction from Mr M Naylor of KeyLand Developments Ltd dated 13 May 2015 and in accordance with our standard terms and conditions as attached at Appendix I. This follows a proposal dated 12 May 2015 by Wardell Armstrong LLP.

1.2 Site Location

1.2.1 The site is North Bierley WWTW, and is located as shown on the site location plan, Drawing No. SH10534-001 (1:50,000 scale), and more detailed site plan SH10534-008 (1:2,500 scale). The site is located approximately 6km south of Bradford city centre, adjacent to the junction of the M606 and M62 motorways and comprises approximately 22ha of a disused wastewater treatment works and fields. The site is bounded by the M606 motorway to the west, Hunsworth Beck to the east, the M62 motorway to the south and fields to the north.

1.3 Purpose and Basis of Report

1.3.1 The purpose of this report is to present the findings of an intrusive site investigation that was carried out to further identify and examine the potential contamination issues identified in a previous environmental assessment, carried out by URS Corporation Ltd (report ref. 44320048, November 2006), that may arise in connection with present use or proposed use of the site and to determine geotechnical information of relevance to the proposed use of the site.

1.4 Proposed Site Use

1.4.1 It is proposed that the site is redeveloped for mixed residential and commercial land uses.

2 PREVIOUS INVESTIGATIONS

2.1 Introduction

- 2.1.1 A Phase I Environmental Site Assessment was carried out by URS Corporation Ltd in November 2006 (report ref. 44320048). At the time of the report the site was an operational WWTW. Historical plans show that a sewage works was present on part of the site in 1893. The Valley Pit Coal and Ironstone workings were also present in the west of the site at this time along with an Old Coal pit in the south. A tramway is reported extending across the western part of the site. By 1908 the pits were reported to be closed and the sewage works had expanded. Subsequent maps show further expansion and changes to the layout up until 2004.
- 2.1.2 The site is situated on Lower Coal Measures which are considered a minor aquifer. Alluvium drift deposits are indicated as likely to be present along the eastern boundary associated with the Hunsworth Beck. It is also likely that made ground of an unknown nature and thickness will be present on the site associated with the collieries and former layouts.
- 2.1.3 The Hunsworth Beck is located adjacent to the eastern site boundary. This was given a quality grading of Grade E (poor) in 2000. The report indicates that eastern parts of the site lie within an area at risk of extreme flooding (Flood Zone 3).
- 2.1.4 The conceptual model identifies sources of contamination from former on-site operations (contamination resulting from settlement tanks, sludge beds, organic matter, fuels), nearby off-site operations (chemical works, rope works, cotton mill, mills, garages, coal pits etc) and made ground.

2.2 Preliminary Conceptual Site Model

2.2.1 A preliminary conceptual site model was presented in the Phase I Environmental Site Assessment. The conceptual model identifies sources of contamination from former on-site operations (contamination resulting from settlement tanks, sludge beds, organic matter, fuels), nearby off-site operations (chemical works, rope works, cotton mill, mills, garages, coal pits etc) and made ground.

- 2.2.2 The report concludes that there are likely to be pollutant linkages present at the site. However the report allocates a low to moderate risk of significant harm based on a continued land use. The report indicates that should the use of the site change a higher risk may be applicable.
- 2.2.3 The updated conceptual model is in Section 9.

3 GEOLOGICAL AND HYDROGEOLOGICAL SETTING

3.1 Geology

3.1.1 The assessment of the geology of the site is based on the published geological mapping sheet (Sheets Yorkshire 231NE and 232NW (Solid and Drift Editions), 1:10,560 scale) supplemented by the geological memoir, topographical plans and site visit. A typical summary section is provided in Table I below along with other geological data.

TABLE I – Geological Summary			
Strata Description			
Made ground.	Made ground of an unknown nature and thickness associated with past site uses is likely to be present		
Natural superficials.	across the site. An unknown thickness of alluvium may be present to the east of the site adjacent to Hunsworth Beck.		
Solid strata.	Sandstones, mudstones and shales of the Lower Coal Measures.		
Dip and dip direction.	Sub-horizontal.		
Evidence of faulting.	Two faults trending NE-SW are located to the north of the site; the north is the downthrow side.		

3.2 Hydrogeology

- 3.2.1 Hydrogeological information from the Environment Agency changed in April 2010 in order to comply with the Water Framework Directive. Where possible, this report considers both the old and new information obtained from:
 - Groundwater Protection Policy and Groundwater Vulnerability maps published by the Environment Agency;
 - Hydrogeological maps published by the British Geological Survey; and
 - Groundwater Protection: Policy and Practice (Environment Agency, 2006).
- 3.2.2 This information indicates the site to be underlain by sandstones, mudstones and shales of the Lower Coal Measures which are classified as a Secondary A Aquifer.

- 3.2.3 Secondary A aquifers are generally fractured or potentially fractured formations and do not have a high primary permeability. Although not producing large quantities of water for abstraction, they are important for local supplies and may supply base flow to rivers.
- 3.2.4 The site does not lie within a source protection zone.

3.3 Hydrology

Surface Water Features

3.3.1 The nearest graded surface watercourse is Hunsworth Beck, which forms the eastern boundary of the site. The Environment Agency has given Hunsworth Beck a General Quality Assessment (Chemistry) rating of E (Poor).

Flooding

3.3.2 The Environment Agency maintains national flood maps based on ground levels, predicted flood levels, information on flood defences and local knowledge. The flood maps show the predicted likelihood of flooding in an area in the context of current and also the proposed land use considered in development planning.

Flooding – Existing Use

- 3.3.3 For existing land use purposes, the likelihood of flooding is classed as very low, low, medium or high based on the Environment Agency map entitled Risk of Flooding from Rivers and Sea. Where applicable, these flood risk categories take into account the effect of any flood defences that may be in the area.
- 3.3.4 The majority of the site is within a very Low risk area. The chance of flooding each year is less than 1 in 1,000 (0.1%).
- 3.3.5 An area to the east of the site towards the Hunsworth Beck is within a Low risk area where the chance of flooding is between 1 in 1000 (0.1%) and 1 in 100 (1%) and is within a Medium risk area where the chance of flooding of between 1 in 100 (1%) and 1 in 30 (3.3%).

Flooding – Planning Purposes

3.3.6 For planning purposes, the likelihood of flooding is classed as low, medium or high based on flood zones identified in National Planning Policy Guidance (2014) attached to the National Planning Policy Framework (2012) and the EA map

entitled Flood Map for Planning (Rivers and Sea). The Flood Map for Planning would only apply if the site was intended for redevelopment.

- 3.3.7 The majority of the site is within Zone 1 and has a low probability of flooding. The chance of flooding each year is less than 0.1% (1 in 1,000).
- 3.3.8 An area to the east of the site towards the Hunsworth Beck is within Zone 2 and has a moderate probability of flooding. The chance of flooding each year is between 1.0% (1 in 100) and 0.1% (1 in 1,000).
- 3.3.9 A thin strip along the Hunsworth Beck is within Zone 3 and has a high probability of flooding. The chance of flooding each year is 1.0% (1 in 100) or greater.

3.4 Mining

General

3.4.1 Research of the mining setting is based on examination of the published topographical and geological information as described in Section 2 and 4 of this report along with other mining archive information. A Coal Authority report for the site has been obtained, dated 23 November 2010 and is attached at Appendix II, a visit was also made to the Coal Authority abandoned mine records office at Mansfield on 25 November 2010.

Surface Workings

3.4.2 Research of topographical, geological and other archive mining records has indicated no evidence of surface workings within the vicinity of the site..

Shallow Underground Workings

3.4.3 From the enquiries made and examination of the geological information there is evidence of shallow underground mining activity beneath the site. Reference to the abandonment plans indicate that these shallow workings are likely to be in the Shertcliffe Bed.

Potential Surface Instability

3.4.4 Most of the ancient and frequently unrecorded mining activity of the nineteenth and earlier centuries was carried out by the room and pillar system. The problems of potential surface instability over such old mine workings arises when the process of upward collapse under gravity penetrates through the solid strata,

either to the surface sub-soil, to superficial deposits and/or tipped material above.

- 3.4.5 The height above the working to which the collapse process can take place before total choke-filling occurs, is generally governed by the volume of the original tunnel or roadway, and by the change in volume of the collapsed material. The greater the volume of the tunnel or void (ie, the greater its height and width), or the smaller the change in volume of the collapsed material, the higher the process of collapse is likely to take place. The change in volume of the collapsed materials may be as little as 10% and as much as 50%. Therefore, the ultimate height of collapse through solid strata is not likely to be less than twice or more than ten times the thickness of the seam mined.
- 3.4.6 The above leads directly to a definition of "shallow" old mine workings and to the delineation of problem areas. Research of existing records, an appreciation of the caving or collapse, and the characteristics of the solid strata overlying such old workings, allows the evaluation of problems and appropriate action.

Deep Mining

- 3.4.7 The Coal Authority report indicates evidence of deep underground mining activity beneath the site in the Blocking and Better Bed Coal seams.
- 3.4.8 Deep mining is generally defined as that mining undertaken at depths greater than about 30m below rockhead.
- 3.4.9 Whilst ground movements would have occurred due to the mining of any deeper seams, surface subsidence effects should have been largely contemporaneous with the mining. The site is considered stable in respect of any past deep mining.
- 3.4.10 There are no current mining activities affecting the site and the site does not lie within influencing distance of any presently known planned future workings.

Mine Entries

3.4.11 The Coal Authority report has indicated that there are ten recorded mine entries on or within influencing distance of the site. Only one of the mine entries is noted to have had any treatment; entry 417427-005 (to the north west of the site) was treated on behalf of the Coal Authority with mass concrete following its collapse in 1997.

Mine Shafts

- 3.4.12 In old abandoned mining areas, it was common practice to backfill the abandoned shafts either completely or, to a staging built at some level above the shaft bottom with loose colliery refuse. In many cases such old mine shafts have subsequently been covered over and have become overgrown and visually indistinguishable. Where no special plugging precautions were taken to seal off the shaft fill material from old workings or, where a shaft was filled on to staging in the shaft, the fill material can run into the old workings or into the empty shaft space beneath the staging. In both cases, the result is the sudden appearance of a collapse hole in the ground the diameter of which may be considerably greater than that of the original shaft.
- 3.4.13 In addition to the recorded mine entries at or near the site, the possibility of there being additional unrecorded mine entries cannot be entirely discounted. During development a careful watch should be maintained for any feature which may represent an unrecorded mine entry, such as circular brickwork or anomalous areas of fill/timber. Should any such feature be identified it should be reported, investigated and acted upon as necessary.

Coal Mine Gas

3.4.14 Examination of the mining and geological information indicates that it is possible that gases migrating from now abandoned coal mine workings may affect the site.

4 SITE INVESTIGATION

4.1 Introduction

- 4.1.1 The current investigation was designed around the preliminary conceptual site model that identified all potential sources, pathways and receptors. This allowed a targeted sampling approach to be undertaken and provide general coverage of the site. Results of the investigation are used to revise the conceptual site model, establish whether linkages identified are plausible and establish the level of risk associated with the site.
- 4.1.2 The site investigation was also carried out to assess the geotechnical nature of the ground. The site investigation comprised of seven cable percussion boreholes, three of which had rotary follow-on, ten window sample boreholes and nineteen trial pits across the site area. Locations were positioned to provide complete coverage of the whole site. Site investigation locations are shown on Drawing SH10534-008 (1:2,500 scale).
- 4.1.3 The investigation including sampling techniques was carried out in accordance with BS10175:2001 Investigation of potentially contaminated sites – code of practice.

4.2 Scope

4.2.1 The investigation was designed as a series of tasks that are summarised below in Table II.

TABLE II – Summary of Tasks			
Task Summary Date(s			
Preparatory	Setting up site investigation contract, including services	November	
Work	enquiries, contractor health & safety document and site	2010- May	
	meeting with contractor/client.	2011	
Intrusive site	7 Cable percussion boreholes to a nominal depth of 10m	16 th May-	
investigation	with rotary open-hole follow-on in 3 boreholes to 30mbgl.	20 th May	
	10 window sample boreholes to a nominal depth of 5m and	2011	
	19 trial pits to a nominal depth of 4m. Installation of		
	monitoring wells for groundwater and gas.		

TABLE II – Summary of Tasks			
Task	Task Summary		
Laboratory	Chemical / geotechnical testing in accredited laboratory –	20 th May –	
analysis	34 soil and 5 groundwater samples. 24 th June		
		2011	
Monitoring	Gas and water level monitoring.	19 th May	
		2011- 17 th	
		May 2012	

4.2.2 The investigation was completed in accordance with Construction (Design and Management) (CDM) Regulations 2007 and a site specific Health & Safety plan. Contractors used during this project include; JB Site Investigations (cable percussion and rotary drillers), Exploration Ltd (window sample borehole drillers), Pudsey Plant Hire (trial pits), ALcontrol Laboratories (geochemical analysis) and Professional Soils Laboratory (geotechnical analysis). Drilling was completed using a variety of methods and these are discussed in more detail below.

4.3 Cable Percussion Boreholes

- 4.3.1 Cable percussion drilling was completed under the part-time supervision of a Wardell Armstrong engineer. Seven cable percussion boreholes (BH1-BH7) were drilled to a maximum depth of 10.7m below ground level (bgl). Locations (see Drawing No. SH10534-008) were positioned provide widespread coverage of the site.
- 4.3.2 Cable percussion borehole logs are attached at Appendix III.

4.4 Rotary Open-Hole Boreholes

- 4.4.1 Rotary open-hole drilling was completed under the part-time supervision of a Wardell Armstrong engineer. Three rotary open-hole boreholes (BH4-BH6) were drilled from the base of the cable percussion boreholes to depths of either 16.7m bgl (BH6) or 30m bgl (BH4 and BH5). Locations (see Drawing No. SH10534-008) were positioned to the south of the site in the area of suspected shallow mine workings.
- 4.4.2 Rotary open-hole drilling borehole logs are attached at Appendix III.

4.5 Window Sample Boreholes

- 4.5.1 Window sample boreholes were completed under the full-time supervision of a Wardell Armstrong engineer. Ten window sample boreholes (WS101-WS110) were drilled to depths of between 2m bgl and 5m bgl. Drilling beyond these depths was not possible due to shallow rockhead or underground obstructions. Locations (see Drawing No. SH10534-008) were positioned to provide widespread coverage of the site.
- 4.5.2 Window sample borehole logs are attached at Appendix IV.

4.6 Trial Pit Excavations

- 4.6.1 Trial pit excavations were completed under the full-time supervision of a Wardell Armstrong engineer. Nineteen trial pits (TP101-TP119) were excavated to depths of between 1.4m and 3.6m bgl using a JCB 3CX Sitemaster hydraulic excavator. Excavations beyond these depths were not possible due to difficult excavation conditions brought about by stiff clay and/or boulders or to carry out soakaway tests. Locations (see Drawing No. SH10534-008) were positioned to provide widespread coverage of the site.
- 4.6.2 Trial pit logs are included at Appendix V.

4.7 Ground Gas and Groundwater Monitoring Standpipes

- 4.7.1 Nine gas and groundwater monitoring standpipes were installed by the cable percussion, rotary open-hole or window sampling drilling contractor at locations BH1, BH5, BH6, BH7, WS102, WS104, WS105, WS107 and WS110.
- 4.7.2 The standpipes were completed with 50mm diameter screen and casing between 4m and 10m bgl, with the screened section extended from the base to 1.00m bgl in boreholes BH1, BH7, WS102, WS104, WS105, WS107 and WS110 and from 9m to 1m bgl in boreholes BH5 and BH6 as 1m of plain standpipe was installed from the base to 9m bgl in these boreholes to provide a sump for groundwater monitoring purposes. A filter pack of 4-6mm washed gravel was placed in each well annulus to just above the screened section. Thereafter the annulus was sealed to the surface with bentonite. Installations were completed with concreted headworks to protect the inner casing and gas valves. All installations were supervised by a Wardell Armstrong engineer on a part-time basis.

- 4.7.3 After installation, all water-monitoring wells were developed using a submersible pump or bailer. Development was continued to until the pH, temperature and electrical conductivity of the purged water had stabilised (i.e. until any two successive reading are within 10% of each other), the water in the wells was visibly clean or until five well volumes of water had been removed.
- 4.7.4 Newly installed monitoring boreholes were left for 24 hours to allow gas levels to equilibrate. Data for methane, carbon dioxide, oxygen and flow rate was collected using a portable infrared gas analyser. Atmospheric pressure was recorded at the time of monitoring. Soil gases were analysed and assessed following guidance from:
 - NHBC Report No. 4, Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present (March, 2007);
 - BS 8485, Code of practice for the characterization and remediation of ground gas in brownfield developments (October 2007); and
 - CIRIA C665, Assessing Risks Posed by Hazardous Ground Gases to Buildings (2007).

4.8 Sampling and Testing

Sampling and Chemical Analysis of Soils

- 4.8.1 Thirty four disturbed samples of material from beneath the site were collected for laboratory analysis. Samples were taken at regular depths, changes in strata and any discrete horizons with a high potential to retain contaminants and logged in general accordance with BS ISO 14688:2002 and BS ISO 10381:2002. Samples were obtained using a fresh pair of nitrile gloves.
- 4.8.2 Samples scheduled for analysis of organic contaminants were placed in amber bottles with a minimum of headspace. The bottles were immediately sealed with polytetrafluoroethylene (PTFE) lined caps and labelled. The remaining small disturbed samples were placed in polypropylene tubs with a minimum of headspace, sealed with airtight polypropylene 'snap-on' lids and labelled. The labels detailed individual sample number, location, depth and sampler identity.
- 4.8.3 Collected samples were stored away from sunlight in temperature controlled conditions and transported by courier to ALcontrol Laboratories. Chain of custody forms were completed for all samples sent to the laboratory. The forms

detailed individual bottle identification number and sample location. The forms were signed on release by the Wardell Armstrong field engineer and upon receipt by the laboratory.

4.8.4 The laboratory analyses scheduled were selected to establish the type, level and distribution of the possible harmful contaminants that may be present on the site given its past and current uses. In order to provide cost effective analysis, solid samples were analysed for a number of substances depending on depth, matrix and a visual assessment of ground conditions. The analysis scheduled is presented in Table III.

TABLE III – Summary of Sample Analysis			
Substance	No. Soil Samples	No. Groundwater Samples	No. Leachate Samples
A standard suite of industrial pollutants including common metals (arsenic, water-soluble boron, cadmium, chromium, chromium ^{VI} , copper, lead, mercury, nickel, selenium, and zinc), pH, sulphate, sulphide, sulphur, thiocyanate, total cyanide and phenols.	30	4	6
Petroleum hydrocarbons ($C_5 - C_{40}$ with aliphatic/aromatic class separation and carbon banding), BTEX, MTBE.	10	5	3
Polycyclic Aromatic Hydrocarbons (PAH).	12	4	6
Volatile Organic Compounds (VOCs).	10	4	-
Semi-Volatile Organic Compounds (SVOCs).	18	5	-
Poly-chlorinated Biphenyl (PCBs).	4	-	-
Soluble Sulphate (2:1).	23	-	-
Total Organic Carbon (TOC).	12	-	-
Asbestos.	13	-	-
Hardness.	-	4	-

4.8.5 The results of the chemical analyses are attached at Appendix VI.

Sampling and Chemical Analysis of Groundwater

4.8.6 Five groundwater samples were collected for laboratory analysis from groundwater monitoring installations using procedures that ensured the collection and preservation of sample quality.

- 4.8.7 Prior to sampling, each well was purged until three well volumes of water had been removed or the well became dry.
- 4.8.8 All water samples were taken using disposable bailers or disposable peristaltic pump tubing, to avoid cross-contamination, with a bottom pour tap, to minimise the loss of more volatile components. Samples were placed in laboratory prepared amber bottles with a minimum of headspace. The bottles were immediately sealed with polytetrafluoroethylene (PTFE) lined caps and labelled. The labels detailed individual sample number, location, depth and sampler identity. The analysis scheduled is presented in Table III.
- 4.8.9 The results of the chemical analyses are attached at Appendix V.

4.9 Quality Assurance and Quality Control

4.9.1 The soil and groundwater samples were collected, transferred to the laboratory under chain of custody and analysed to ensure traceability and reliability of analytical results. Based on the laboratory QA data the analytical results are considered acceptable for interpretative use.

4.10 Limitations of Site Investigation

4.10.1 It should be noted that the interpretation of the results of the physical site investigation is based on a limited number of investigation points. The locations and numbers of the investigation locations were governed by the physical state of the site and the location of known services at the time of the investigation. Although reasonable inferences have been made during the interpretation, it is possible that variances in the thickness, distribution and physical/chemical characteristics of the strata present will exist.

5 RESULTS OF SITE INVESTIGATION

5.1 Ground Conditions

Made Ground

- 5.1.1 Made Ground was present in the majority of borehole, window sample and trial pit locations on site; exceptions to this were borehole locations BH1 and BH3, window sample location WS110, and trial pit locations TP108, TP112, TP113, TP114 and TP116. The made ground on site comprised four horizons and varied in thickness from 0.15m in trial pit TP115 to 8.3m in borehole BH6.
- 5.1.2 The first horizon of made ground was a soft to firm, orange to black, locally cobbly, sandy, gravelly clay. The second horizon of made ground consisted of a loose to dense, grey or brown, locally clayey or cobbly, sandy gravel or gravelly sand. The gravel fraction in these two horizons consisted of a number of constituents including sandstone, mudstone, shale, coal fragments, brick, typical aggregate, concrete, tarmac and wood fragments. The third horizon of made ground consisted of a loose to medium dense, grey to black, locally slightly clayey, sandy gravel of shale. The fourth horizon consisted of a loose, black, locally slightly clayey, sandy gravel of sandstone, mudstone, shale, coal fragments, brick, typical aggregate, concrete, tarmac and ash. This horizon consisted in this horizon consisted of sandstone, mudstone, shale, coal fragments, brick, typical aggregate, concrete, tarmac and ash. This horizon was observed in window sample borehole WS108 and trial pits TP110, TP111 and TP115. Ash was also observed in the made ground in borehole BH7 and trial pit TP105.
- 5.1.3 The thickness of the made ground was unproven in window sample borehole WS109 due to drilling refusals caused by obstructions and in trial pits TP101, TP102, TP103, TP106 and TP107 due to the extent of the made ground and limitations of the excavator.

Natural Strata

5.1.4 The natural materials encountered during the intrusive investigation comprised a 3.5m thickness of predominantly soft to stiff, orange-brown mottled grey, locally cobbly with rare boulders, sandy, gravelly clay. The gravel fraction consisted of angular to subrounded, fine to medium grained sandstone, shale, mudstone and coal fragments. Cobbles and boulders were typically subangular to subrounded, fine to medium grained sandstone.

- 5.1.5 Rockhead was encountered at all borehole locations and at window sample borehole locations WS102 and WS105 during the intrusive investigation and consisted of sandstone and mudstone. The rock was proven to 30m bgl by rotary open-hole drilling. All natural strata were interpreted as the weathering profile of the underlying Middle Coal Measures geology.
- 5.1.6 A summary of the strata beneath the site is shown in Table IV.

	Table IV – Summary of strata beneath the site			
Depth to base of strata (mbgl)		Mean Thickness	Typical Description	
Max.	Min.	Mean	(m)	
0.5	0.1	0.21	0.21	Topsoil
8.4*	0.4*	2.55*	2.42*	Made Ground
1.4*	10.5*	7.27*	3.47*	Natural Material
*	*	*	*	Rockhead
* Base of	* Base of strata not always proven.			

5.2 Groundwater

- 5.2.1 Groundwater was encountered during the intrusive investigation works in boreholes BH5 and BH6 and in window sample boreholes WS102, WS105 and WS110. During development and purging the water was initially cloudy but became increasingly clear until visibly clean with the increasing volume removed. Recharge was observed to be moderate in all monitoring wells. No visual or olfactory evidence of contamination was observed in the water extracted from the wells.
- 5.2.2 Water levels were measured on six occasions using a product/water interface probe. No free phase product was detected. Water elevations measured relative to a site datum (ground level) are shown in Table V.

Table V								
Borehole	Date and Depth to Water (m bgl)							
Identification	19/5/11	1/6/11	22/7/11	3/4/12	20/4/12	17/5/12		
BH1	DRY	DRY	DRY	DRY	DRY	DRY		
BH5	-	8.42	8.94	7.73	7.49	7.41		
BH6	-	9.56	9.60	9.07	8.50	8.70		
BH7	-	DRY	DRY	DRY	5.13	5.37		
WS102	4.58	4.90	4.80	DRY	2.04	DRY		
WS104	DRY	DRY	DRY	DRY	DRY	DRY		
WS105	2.17	2.24	2.10	1.61	DRY	1.481		
WS107	DRY	DRY	DRY	DRY	3.50	DRY		
WS110	3.01	4.50	3.21	-	-	-		

5.2.3 Analysis of the reduced groundwater levels is inconclusive and it is assumed that the overall groundwater flow is to the south east.

5.3 Soakaway Tests

- 5.3.1 Five soakaway tests were carried out on site in trial pits TP101 and TP103 (to the east of the site), TP105 (to the south of the site), TP108 (to the north of the site) and TP113 (to the west of the site). The results indicate that soil in the vicinity of:
 - TP101 has an approximate infiltration rate of 2.708 x 10⁻⁴m/s; and
 - TP103 has an approximate infiltration rate of 2.197×10^{-4} m/s.
- 5.3.2 However, no infiltration was observed in the soakaway tests in trial pits TP105, TP108 and TP113.
- 5.3.3 These infiltration rates indicate that the made ground beneath the former wastewater treatment works area of the site is likely to be suitable for the construction of soakaways but the natural materials observed to the west and north of the site are not suitable for the construction of soakaways.
- 5.3.4 The results of the soakaway tests are attached at Appendix IX.

5.4 Ground Gas

- 5.4.1 There are several regulatory authorities that require the assessment of ground gas on potentially contaminated sites. The main stakeholders are Building Control, Local Authority Planning and Environmental Health (Contaminated Land Officers). CIRIA have published guidance (C665, 2007) on risk assessment for new buildings and existing structures on ground with potentially hazardous gassing regimes. This guidance indicates that a semi-quantitative risk assessment for ground gas can be completed using Gas Screening Values (GSV) and consideration of the conceptual site model.
- 5.4.2 Six gas monitoring rounds were completed over a 12 month period. Three sets of readings were recorded at low and falling atmospheric pressure. Gas monitoring results are attached at Appendix X.

5.5 Observations of contamination

- 5.5.1 Observations of soil contamination noted during the site investigation are presented on the borehole, window sample borehole and trial pit logs (Appendices III, IV and V). These can be summarised as follows:
 - Ash was observed in made ground in borehole BH7, window sample borehole WS108 and trial pits TP105, TP110, TP111 and TP115 at ground level to depths of up to 4.3mbgl.

5.6 Shallow mining

- 5.6.1 No intact coal seams were encountered during the rotary drilling in the south of the site. However, there was evidence of broken/soft ground accompanied by loss of flush in BH6 which may indicate the presence of workings. The broken ground was observed at depths of between 11.3m and 16.7m bgl. The borehole collapsed at 16.7m bgl and drilling was terminated at that depth.
- 5.6.2 Boreholes BH4 and BH5 were drilled to a depth of 30m bgl with no evidence of shallow mining.

6 GUIDANCE ON CONTAMINATION RISK ASSESSMENT

6.1 Introduction

- 6.1.1 The following section aims to assess the magnitude and significance of potential risks to human health, surface water, groundwater, ecosystems and buildings from contaminated soil and groundwater. The assessment provides information that is fit for purpose given the regulatory context and completed in accordance with UK best practice. A summary of the risk assessment process is presented below. More detailed information on risk assessments is contained in various reports published by the Environment Agency and DEFRA including:
 - Contaminated Land Science Reports (SR2 to 4); and
 - Model Procedures for the Management of Land Contamination (CLR 11).

6.2 General Soil Contamination Guidance

- 6.2.1 The Environment Agency (EA) has a statutory duty to ensure the protection of the environment and the remediation of contaminated land and groundwater. In order to achieve this, the EA employs the principle of risk assessment the risk of a contaminant source causing harm or pollution via a given pathway to an identified receptor. If one of the source-pathway-receptor linkages is not considered to be present then there is deemed to be no risk. However, if a contaminant source is present and there is a pathway for that contaminant to reach a receptor then there is a potential risk of significant harm to the receptor. Therefore, if the source-pathway-receptor linkages are complete, there is a requirement to undertake a risk assessment related to the receptor of concern, be it human health, surface water, groundwater, buildings or other property or ecological issues.
- 6.2.2 The first stage in the assessment of a site is development of a conceptual model. This includes consideration of all possible sources of contamination on the site, the potential receptors and whether there is a plausible pathway between the two. This allows evaluation of whether further more complicated risk assessment for an identified receptor is necessary. A site-specific conceptual model is presented in previous reports and is revised here in Section 9 based on the findings of the site investigations.

Generic Assessment Criteria

- 6.2.3 In March 2002 the Environment Agency and the Department of Environment, Food and Rural Affairs (DEFRA) released a package of guidance to assess the health risks posed by contaminated land as part of the statutory framework for contaminated land. The Contaminated Land Exposure Assessment (CLEA) model is a framework for estimating the likely exposure to contaminants in soil as part of the wider approach of the UK's assessment of risk and suitability for use. The methodology adopted for CLEA builds upon the source-pathway-receptor model for the assessment of risk. Following the CLEA model, generic Soil Guideline Values (SGVs) were developed to act as triggers for intervention in a number of end-use scenarios. The Environment Agency commenced a programme looking at 55 contaminants. The CLEA methodology has been updated and the SGVs were withdrawn from use in August 2008. New SGVs have been published by the EA since March 2009 onwards.
- 6.2.4 The CLEA SGVs are derived using specific parameters, which may not be relevant to each site. The CLEA software allows parameters to be changed and site specific assessment criteria (SSAC) can be developed. The CLEA methodology also uses a statistical evaluation of all the data collected in order to give an overall impression of the site and therefore the exposure to a modelled receptor rather then using individual contaminant values, which may vary dramatically across the site. The statistical tests calculate a normalised upper bound value for the site as a whole and also give an indication of whether a particular data value is a statistical outlier (potential hotspot) or whether it is part of the whole population of samples.
- 6.2.5 The Soil Guideline Values derived from the CLEA model are intended for use in assessing the risk to long term human users of the site. There is also a requirement to consider the potential for harm from short-term exposure to contaminants at the site, e.g. to construction workers who may be exposed to risk via inhalation of dust or dermal contact with the contaminated material.
- 6.2.6 In the absence of SGVs published under the new CLEA methodology, Land Quality Management (LQM) and the Chartered Institute of Environmental Health (CIEH) published their third edition of generic assessment criteria (GAC) for 82 inorganic and organic substances in January 2015 which are termed Suitable 4 Use Levels or S4UL's. In addition, GAC values for 30 separate organic compounds were

published in December 2009 by the Environmental Industries Commission (EIC), the Association of Geotechnical and Geoenvironmental Specialists (AGS) and CL:AIRE. These GAC values have been derived in the same vein as SGVs and are intended to be used in the same manner. Additionally, the GAC values have been produced for varying soil organic matter content (i.e. 1%, 2.5% and 6%).

Category 4 Screening Levels (C4SLs)

- 6.2.7 Revised Statutory Guidance to support Part 2A of the Environmental Protection Act 1990 was published in April 2012 by DEFRA. This Guidance introduced a new four-category system for classifying land under Part 2A for cases of a Significant Possibility of Significant Harm to human health:
 - Category 1 includes land where the level of risk is clearly unacceptable;
 - Category 2/3 border defines the point at which land is determined under the legislation;
 - Category 3 would include sites that regulators conclude should not be designated as contaminated under Part 2A; and
 - Category 4 includes land where the level of risk posed is acceptably low.
- 6.2.8 Land is determined as 'contaminated land' under Part 2A if it falls within Categories 1 or 2.
- 6.2.9 In March 2014, DEFRA published C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space for six substances – arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.
- 6.2.10 The C4SLs have been derived in support of Defra's revised Statutory Guidance for Part 2A of the Environmental Protection Act 1990 but it was anticipated that they could be used under the planning regime as generic screening criteria within a GQRA, albeit describing a higher level of risk than the currently or previously available SGVs.
- 6.2.11 In the case of lead where the SGV was removed in 2008 and was not replaced, the C4SL for lead is considered a suitable generic screening value.

6.3 Statistical analysis

6.3.1 Statistical analysis has been completed to identify if the data set for each substance tested contains outliers, has as normal or non-normal distribution and if there is significant evidence that the mean concentration, as defined by the

95% upper confidence level (UCL), is less than the adopted screening value. This process follows the CL:AIRE/CIEH Guidance on Comparing Soil Contamination Data with a Critical Concentration, May 2008. Results from this statistical testing can be used to inform decisions on whether land is suitable for use under the land use planning system without mitigation to break identified pollutant linkages.

6.4 General Water Contamination Guidance

- 6.4.1 Concentrations of contaminants detected in groundwater have been compared to the UK Drinking Water Standards (UKDWS) encompassing the Water Supply (Water Quality) Regulations 1989 and Water Supply (Water Quality) Regulations 2000 where drinking water is the receptor. Where surface water is the receptor the Environment Agency Environmental Quality Standards (EQS) have also been used.
- 6.4.2 Where the UKDWS and EQS do not encompass contaminants of concern to human health, reference is made to other appropriate guidance. This includes the European Union Council Directives 98/83/EC and 75/440/EEC on the quality of water intended for human consumption and the quality required of surface water intended for the abstraction of drinking water respectively. Additional screening values are derived from the World Health Organisation (WHO) Guidelines for Drinking-water Quality (1984) and the Dutch Target and Intervention Values for Soil Remediation.

7 GENERIC QUANTITATIVE RISK ASSESSMENT

7.1 Soil Results

- 7.1.1 Soil samples taken from the site have been tested for potential chemicals of concern appropriate to the former land uses. Results from the chemical testing have been evaluated with reference to each of the plausible receptors identified in the conceptual model. The results are evaluated differently for each receptor.
- 7.1.2 The proposed redevelopment is for commercial/industrial use. Therefore, the results have been assessed for commercial assessment criteria.

7.2 Human Health - occupiers

- 7.2.1 As the receptor is human health, the most relevant risk assessment model is the CLEA model. The model estimates child and adult exposures to soil contaminants for those potentially living, working and/or playing on contaminated sites over long time periods and has been used to produce the SGVs for the United Kingdom.
- 7.2.2 The principal pathways of concern for human health are dermal contact, ingestion, and inhalation. Generally, in the assessment of risk to site users, only samples taken in the top 1m are considered as contact with deeper samples is unlikely.
- 7.2.3 The geometric mean soil organic matter content at the site is 3.67%. Therefore, GAC values derived using 2.5% SOM have been selected in this assessment. The pH of the soil ranged from 6.29 in TP111-0.7m to 8.67 in WS103-0.3m.

Metals

- 7.2.4 The mean concentration (95% UCL) for arsenic, boron, cadmium, chromium (III and VI), copper, lead, mercury, nickel, selenium and zinc were below their respective SGV or GAC. Therefore, it may be considered that the concentrations of these substances in soil on site do not present a significant risk to long-term human health.
- 7.2.5 Statistical analysis of the laboratory results is attached at Appendix VII.

Total Petroleum Hydrocarbons

- 7.2.6 Most samples recorded low concentrations of all petroleum hydrocarbon fractions (TPH) and no visual or olfactory evidence of petroleum hydrocarbons was observed during the intrusive investigation.
- 7.2.7 The maximum recorded concentrations for all TPH fractions are significantly less than the adopted GAC, as is shown in Table VI below. Therefore, TPH contamination is considered unlikely to present a significant risk to long term human health at the site.

Table VI – TPH Summary							
TPH Fraction	Max. Recorded (mg/kg)	Location	Generic Assessment Criteria (mg/kg)				
GRO (C4-C12)	0.828	WS105-0.3m	-				
Aliphatics C5-C6	0.0123	WS105-0.3m	5,900 (558)s				
Aliphatics >C6-C8	0.0526	WS105-0.3m	17,000 (322)s				
Aliphatics >C8-C10	0.113	WS105-0.3m	4,800 (190)v				
Aliphatics >C10-C12	0.328	WS105-0.3m	23,000 (118)v				
Aliphatics >C12-C16	79.3	TP104-05m	82,000 (59)s				
Aliphatics >C16-C35	288.6	TP105-0.3m	1,700,000				
Aliphatics >C35-C44	36.3	TP105-0.3m	1,700,000				
Aromatics C6-C7	<0.01	-	690				
Aromatics >C7-C8	0.0135	WS108-0.4m	1,800				
Aromatics >EC8-EC10	0.0963	WS105-0.3m	110				
Aromatics >EC10-EC12	0.218	WS105-0.3m	590				
Aromatics >EC12-EC16	58	WS108-0.4m	2,300 (419)s				
Aromatics >EC16-EC21	247	WS108-0.4m	1,900				
Aromatics >EC21-EC35	517	WS108-0.4m	1,900				
Aromatics >EC35-EC44	125	WS108-0.4m	1,900				

NB – calculation of GAC values assumes that no free phase product is present.

Semi-Volatile Organic Compounds and Polycyclic Aromatic Hydrocarbons

7.2.8 The majority of the samples tested contained concentrations of Semi-Volatile Organic Compounds (SVOC) below the Limit of Detection (LOD). However, minor concentrations of dibenzofuran, carbazole and 2-methylnaphthalene were detected above the LOD but below their respective screening criteria. Therefore, these compounds are unlikely to present a significant risk to long term human health.

- 7.2.9 The mean concentrations (95% UCL) of all Polycyclic Aromatic Hydrocarbons (PAH) compounds analysed (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(123cd)pyrene, dibenz(ah)anthracene and benzo(ghi)perylene) were below their respective GAC. Therefore, these PAHs are unlikely to present a significant risk to long term human health.
- 7.2.10 Statistical analysis of the laboratory results is attached at Appendix VII.

Table VII – PAH Soil Exceedances								
Substance	Number of Individual Sample Exceedences	Mean Concentration (95% Confidence Level) (mg/kg)	Generic Assessment Criteria (mg/kg)					
Acenaphthene	0	1.85	97,000					
Acenaphthylene	0	0.26	97,000					
Anthracene	0	2.67	540,000					
Benzo(a)anthracene	0	5.53	170					
Benzo(a)pyrene	0	5.44	35					
Benzo(b)fluoranthene	0	4.67	44					
Benzo(ghi)perylene	0	3.02	4000					
Benzo(k)fluoranthene	0	3.44	1200					
Chrysene	0	5.27	350					
Dibenzo(ah)anthracene	0	0.73	3.6					
Fluoranthene	0	12.29	23,000					
Fluorene	0	1.39	68,000					
Indeno(123cd)pyrene	0	2.74	510					
Naphthalene	0	1.97	460					
Phenanthrene	0	11.56	22,000					
Pyrene	0	10.31	54,000					

Volatile Organic Compounds

7.2.11 The recorded concentrations of Volatile Organic Compounds (VOC) were all recorded at their respective limits of detection (LOD) or below their respective SGV or GAC. Therefore, these compounds are unlikely to present a significant risk to long term human health.

Polychlorinated Biphenyls

7.2.12 Concentrations of Polychlorinated Biphenyls (PCB - ICES 7) have been compared to their respective screening values. None of the samples tested contained concentrations of PCB above their limit of detection or screening value. Therefore, these compounds are unlikely to present a significant risk to long term human health.

Other Substances

- 7.2.13 Statistical analysis for monohydric phenol, total cyanide and sulphide was carried out to identify the 95% confidence limits of the measured mean and to compare the upper 95th percentile with the respective screening criteria.
- 7.2.14 The upper bound values (US95) for phenol, cyanide and sulphide were below their respective screening values. Therefore, it may be considered that the concentrations of these substances in soil on site do not present a significant risk to long-term human health.
- 7.2.15 Statistical analysis of the laboratory results is attached at Appendix VII.

Asbestos

- 7.2.16 Guidance on the need for asbestos surveys and the method of carrying them out are given in HSE Publication HSG264.
- 7.2.17 Thirteen samples were screened for asbestos and no fibres were detected. In addition, no visual evidence of asbestos was recorded during site investigation works. Therefore, asbestos contamination is unlikely to pose a risk to future site occupiers.

7.3 Human Health – Construction Workers

7.3.1 The CLEA Soil Guideline Values only apply to the protection of health for long term chronic exposure. Construction workers are more likely to be at risk from a

high single exposure, i.e. an acute dose, which can result in contaminant poisoning. Suggested values for acute lethal doses of arsenic, cadmium, chromium, inorganic mercury, nickel and selenium is outlined in the Environment Agency R&D SGV reports from 2002.

7.3.2 None of the samples contained concentrations of cadmium, chromium, inorganic mercury, nickel or selenium that are elevated with respects to an acute lethal dose. No acute lethal dose value is given for lead.

7.4 Ecology – Future Landscaped Areas

- 7.4.1 Ecological Soil Screening Levels (Eco-SSL) have been published by the USEPA for a range of metals. The Eco-SSLs present indicative values for assessing potential risk to plants and other ecological receptors. As no relevant UK guidance exists for assessing risk to ecology, the recorded metal concentrations have been compared on an individual basis to Eco-SSLs.
- 7.4.2 The mean concentrations (95% UCL) for cadmium and nickel were below the Eco-SSLs for plants. Therefore, it may be considered that the concentrations of cadmium and nickel in soil on site do not present a risk to sensitive plants.
- 7.4.3 The mean concentrations (95% UCL) for arsenic, copper, lead and zinc were above the Eco-SSLs for plants. Therefore, it may be considered that the concentrations of these elements may pose a risk to sensitive plant growth in future garden or landscaped areas.

7.5 Groundwater Results

- 7.5.1 Groundwater samples taken from the site have been tested for potential chemicals of concern appropriate to the former land uses. As a number of the installed wells were dry our assessment of the risk to controlled waters is guided by the analysis of groundwater samples and soil samples submitted for leachate preparation. While leachate preparation is considered to be more aggressive than natural processes in the unsaturated zone, the results give broadly representative estimate of the leachability of contaminants.
- 7.5.2 Due to the proximity of the Hunsworth Beck, concentrations of contaminants detected in groundwater have been compared to EQS as surface water is the most sensitive fate of the groundwater beneath the site. The hardness of the

water ranged from 399mg/l to 1,220mg/l and the maximum hardness dependent EQS have been selected.

7.5.3 The main pathway by which contaminants are likely to reach the groundwater is through infiltration of rainwater causing vertical movement through the ground. At present the majority of the site is covered by hardstanding in the form of tarmac and/or a substantial thickness reinforced concrete, surfaced in places by a vinyl screed which should prevent the downward passage of any contaminants.

Metals, Semi-metals and Non-metals

- 7.5.4 The majority of metal concentrations were below their respective LOD or screening value and are considered unlikely to pose a significant risk to controlled waters. However, elevated concentrations of several metals in some samples were recorded as discussed below.
- 7.5.5 The recorded concentration of total chromium ranged from 6.14μg/l to 29.1μg/l which are elevated with respect to the EQS of 4.7μg/l but are below the chromium UKDWS of 50μg/l.
- 7.5.6 The concentration of chromium VI ranged from <LOD to 54µg/l which are elevated with respect to the EQS of 3.4µg/l. The analytical method for total chromium is more sensitive with a lower limit of detection compared with the method for chromium VI and is considered more representative of the chromium concentrations in the samples.
- 7.5.7 The recorded concentration of cadmium ranged from <LOD to 0.346µg/l which are elevated with respect to the EQS of 0.08µg/l but below the UKDWS of 5µg/l.
- 7.5.8 The recorded concentration of nickel in BH6, with a concentration of 50.2µg/l, was elevated with respect to the hardness dependent EQS of 20µg/l. The recorded concentrations of nickel in boreholes downstream of BH6 were below the EQS.
- 7.5.9 Therefore, these metals are not considered to represent a significant risk to controlled waters at the site based on the majority of groundwater samples recording very low to low concentrations with several samples with minor exceedences of EQS with no significant exceedance of UKDWS.

Total Petroleum Hydrocarbons

- 7.5.10 There is no EQS value for TPH, so reference is made to the UK Drinking Water Standards (UKDWS) which provides a value for the maximum tolerable concentration of dissolved/emulsified hydrocarbons allowed in drinking water at the tap (0.01mg/l). There are also limits for dissolved or emulsified hydrocarbons given in the Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 of 0.05mg/l, 0.2mg/l or 1mg/l dependent on the degree of treatment required.
- 7.5.11 A conservative approach of comparing each speciated TPHCWG fraction with the UKDWS of 0.01mg/l has been performed. In the majority of the samples analysed, the concentration of aromatic and aliphatic petroleum hydrocarbon fractions between C6 and C35 were below the Limit of Detection (LOD).
- 7.5.12 Slightly elevated concentrations of long chain-length aliphatic hydrocarbons (C21-C35) from BH5 and WS110 were recorded at 0.216mg/l and 0.017mg/l respectively. These concentrations exceed the UKDWS of 0.01mg/l but are below the DWS surface water abstraction limit of 1mg/l.
- 7.5.13 Elevated concentrations of medium to long chain-length aliphatic and aromatic hydrocarbons (C16-C35) were detected in borehole BH6. The maximum concentration was recorded in the aliphatic fraction C21-C35, 3.39mg/l, which exceeds the UKDWS of 0.01mg/l and the DWS surface water abstraction limit of 1mg/l.
- 7.5.14 Although elevated TPH groundwater concentrations were identified in BH6, negligible or low levels of TPH were recorded up gradient of this area and it is considered to represent an isolated hotspot. Given the localised occurrence and lack of obvious source or presence of free product, this is not considered significant and is not considered further.

Volatile Organic Compounds (VOC)

7.5.15 The recorded concentrations of VOC were all recorded at or below the respective LOD, with the exception of toluene in sample WS110 which recorded a minor concentration of 1.44µg/l. Therefore, these compounds are unlikely to present a significant risk to controlled waters at the site.

Semi-Volatile Organic Compounds and Polycyclic Aromatic Hydrocarbons

- 7.5.16 The recorded concentrations of SVOC were all at or below the respective LOD, with the exception of bis(2-ethylhexyl)pthalate in samples BH5 and BH6 which recorded minor concentrations of 8.11µg/l and 3.92µg/l respectively. Therefore, these compounds are unlikely to present a significant risk to controlled waters at the site.
- 7.5.17 For the purposes of this risk assessment, benzo(a)pyrene and dibenz(a,h)anthracene are considered to be the most carcinogenic PAH compound and naphthalene is considered to be the most mobile PAH. These compounds have been used as surrogates to assess the degree of risk posed by PAH compounds in groundwater and surface water.
- 7.5.18 The recorded concentrations of naphthalene ranged from <0.1µg/l to 1.22µg/l which are below the annual average EQS of 2.4µg/l.
- 7.5.19 The recorded concentrations of benzo(a)pyrene ranged from <0.009 μ g/l to 2.55 μ g/l in BH5 which is above the maximum allowable EQS of 0.1 μ g/l.
- 7.5.20 The recorded concentrations of dibenzo(a,h)anthracene ranged from <0.016μg/l to 0.369μg/l in BH5 which is above the maximum allowable EQS of 0.1μg/l for benzo(a)pyrene.
- 7.5.21 Boreholes downstream of BH5 recorded concentrations of benzo(a)pyrene and dibenzo(a,h)anthracene below the maximum allowable EQS which may indicate an off-site source of benzo(a)pyrene and dibenzo(a,h)anthracene in groundwater around BH5. As boreholes closer to the Hunsworth Beck have recorded concentrations of benzo(a)pyrene and dibenzo(a,h)anthracene are below the maximum allowable EQS and it is considered unlikely to present a significant risk to controlled waters at the site.

7.6 Leachate Results

Metals, Semi-metals and Non-metals

7.6.1 The majority of leachable metal concentrations were below their respective LOD or screening value and are considered unlikely to pose a significant risk to controlled waters. In contrast to this, the recorded concentration of leachable copper ranged from 1.34µg/l to 4.65µg/l in most samples. An elevated

concentration in WS108-0.4m was recorded at 60.9μ g/l compared to its EQS of 28μ g/l but was below the UKDWS of $2,000\mu$ g/l. These values are not considered to pose a significant risk to controlled waters.

Total Petroleum Hydrocarbons

7.6.2 The concentration of leachable aromatic and aliphatic petroleum hydrocarbon fractions were below the LOD and are not considered to pose a significant risk to controlled waters.

Polycyclic Aromatic Hydrocarbons

- 7.6.3 The recorded concentrations of benzo(a)pyrene ranged from <0.009µg/l to 0.00926µg/l which is below the maximum allowable EQS of 0.1µg/l.</p>
- 7.6.4 The recorded concentrations of dibenzo(a,h)anthracene was less than the LOD of <0.016µg/l and the maximum allowable EQS of 0.1µg/l for benzo(a)pyrene.
- 7.6.5 The recorded concentrations of naphthalene was less than the LOD of $<0.1\mu g/l$ and below the annual average EQS of $2.4\mu g/l$.
- 7.6.6 Based on these results, the soils on site are not considered to pose a significant risk to controlled waters from PAH compounds.

7.7 Ground Gas

7.7.1 The potential for elevated ground gas concentrations at the site has been identified in the desk study report and subsequent research into the mining setting of the site.

Ground Gas Assessment

- 7.7.2 The ground gas assessment has been carried out in consultation with the following guidance:
 - Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings (BS 8485:2015);
 - Assessing Risks Posed by Hazardous Ground Gases to Buildings, CIRIA C665, 2007.
- 7.7.3 The ground gas assessment has been undertaken using the Wilson and Card classification adopted by BS 8485: 2015 to derive a Characteristic Situation.

Development Area

- 7.7.4 The monitoring wells within the development area are characterised by low concentrations of methane (max 1.6%) and moderate concentrations of carbon dioxide (max 3.7%) (Table I overleaf). Flow rates for the boreholes were typically 0.1l/hr with a peak reading of 0.4l/hr and barometric pressures ranging from 978mb to 1014mb.
- 7.7.5 Using the Wilson and Card classification system and based on the monitoring results, a GSV of 0.015I/hr has been calculated. This corresponds to Characteristic Situation 1 (green or very low risk) classification.

Outside of Development Area – BH5

- 7.7.6 An exception to the general site trend was borehole BH5 to the south of the site (outside of the proposed development layout) which recorded very high concentrations of methane (max 34.6%) and moderate concentrations of carbon dioxide (max 3.0%). Flow rates for BH5 ranged from 0.0-0.2l/hr.
- 7.7.7 Using the Wilson and Card classification system and based on the monitoring results for BH5, a GSV of 0.07l/hr has been calculated. This corresponds to Characteristic Situation 2 for area around BH5. If the area around BH5 is developed in the future then consideration of ground gas protection measures appropriate to Characteristic Situation 2 and/or further monitoring will be required.

	TABLE I: SUMMARY OF GROUND GAS MONITORING DATA					
Borehole	Response Zone/Strata	No. Tests	CH₄ (%)	CO2 (%)	Flow (l/hr)	Atmospheric Pressure (mb)
BH1	1m-6.4m/ Natural	6	0.0	0.0-3.4	0.0-0.2	980-1014
BH5	1m-10m/MG, Natural	5	0.0-34.6	0.2-3.0	0.0-0.2	981-1014
BH6	1m-10m/MG, Natural	5	0.0	0.3-3.4	0.0-0.1	981-1014
BH7	1m-7.8m/MG, Natural	5	0.0-1.6	0.0-1.4	0.0-0.3	978-1013

	TABLE I: SUMMARY OF GROUND GAS MONITORING DATA					
Borehole	Response Zone/Strata	No. Tests	CH₄ (%)	CO2 (%)	Flow (l/hr)	Atmospheric Pressure (mb)
WS102	1m-5m/ Natural	6	0.0	0.1-1.4	0.0-0.1	980-1014
WS104	1m-5m/MG, Natural	6	0.0	0.0-3.7	0.0-0.4	981-1014
WS105	1m-6.4m/MG, Natural	6	0.0	0.0-2.4	0.0-0.1	981-1014
WS107	1m-6.4m/MG, Natural	6	0.0	0.0-2.0	0.0-0.3	980-1014
WS110	1m-6.4m/MG, Natural	3	0.0	0.0-1.3	0.0-0.1	1005-1014

Ground Gas Protection Measures

- 7.7.8 CIRIA Report C735, entitled 'Good Practice and verification of protection systems for buildings against hazardous ground gases' presents guidance on the approach for verification of gas protection systems and describes how it should be reported.
- 7.7.9 The calculation of the GSV using the ground gas data from the monitoring wells at the site indicates a classification of Characteristic Situation 1 and no special ground gas protection measures are required for the development area.
- 7.7.10 Although outside of the development area, the monitoring results from BH5 indicates a classification of Characteristic Situation 2. If the area around BH5 is developed in the future then consideration of ground gas protection measures appropriate to Characteristic Situation 2 and/or further monitoring will be required.

7.8 Radon Gas

7.8.1 An initial assessment for radon gas has been carried out. The determination follows the two-stage procedure outlined in *BR211 Radon: Guidance on protective measures for new dwellings (2015)*. The assessment confirms that no specific radon protection measures are required at the site

7.9 Building Materials

Concrete

- 7.9.1 Concentrations of total sulphate were measured in order to indicate the potential for concrete attack. Concentrations on site ranged between 0.005% and 0.456% indicating that there is potential for concrete attack on site.
- 7.9.2 Results from sulphate (2:1 extract) for materials on site ranged between 0.008g/l and 0.204g/l. These results indicate that a worst case design sulphate class of DS-2 and Aggressive Chemical for Concrete (ACEC) class of AC-2 may be appropriate for the site. Relevant guidelines are given in BRE Special Digest 1: Concrete in Aggressive Ground.

Water Supply Pipes

- 7.9.3 Permeation and accelerated deterioration of pipe material can occur due to chemical reactions between the pipe and contaminants in the ground in which it is laid. This can lead to premature failures resulting in leakage and loss of water quality.
- 7.9.4 The Water Supply (Water Quality) Regulations in England and Wales, the Byelaws in Scotland and the Northern Ireland Water Regulations include a requirement to use only suitable materials when laying water pipes and the laying of unprotected water supply pipes through contaminated land is not permitted.
- 7.9.5 A table of threshold values for various contaminants has been produced by UKWIR in their report Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites (ref: 10/WM/03/21). These threshold values allow an assessor to select an appropriate pipe material where the contaminant concentrations are below the threshold values.
- 7.9.6 The selection of an appropriate pipe material based on the worst case (maximum) contaminant concentrations at the site is presented below in Table XI. Based on the available chemical test results, it is recommended that either wrapped ductile iron or barrier pipe is used for water supply to the site. Further information regarding the selection of materials for water supply pipes is given in the UKWIR Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites.

TABL	TABLE XI – UKWIR Pipe Material and Threshold Value (mg/kg)						
Contaminant	Max / Range Concentration	PE	PVC	Barrier Pipe (PE-AL-PE)	Wrapped Steel	Wrapped Ductile Iron	Copper
VOC's	0.754mg/kg	0.5	0.125	Pass	Pass	Pass	Pass
BTEX +MTBE	<0.029mg/kg	0.1	0.03	Pass	Pass	Pass	Pass
SVOC's including aliphatic and aromatic fraction C5-C10)	290.75mg/kg	2	1.4	Pass	Pass	Pass	Pass
Phenols	<0.1mg/kg	2	0.4	Pass	Pass	Pass	Pass
Mineral Oil C11-C20	328.35mg/kg	10	Pass	Pass	Pass	Pass	Pass
Mineral Oil C21-C40	782.3mg/kg	500	Pass	Pass	Pass	Pass	Pass
Corrosive (conductivity, redox and pH)	6.29-8.67 pH range	Pass	Pass	Pass	Fail	Pass	Fail
Nitrobenzene	<0.1	0.5	0.4	Pass	Pass	Pass	Pass
Preferred Pipe Type		-	-	~	-	~	-

8 GEOTECHNICAL RESULTS

8.1 Introduction

- 8.1.1 Site investigation works have identified significant thicknesses of made ground across the majority of the site. This is underlain by natural deposits of sandy, gravelly clay.
- 8.1.2 In total fifty five samples of made ground and natural material were collected from various depths and tested for range of geotechnical parameters including:
 - Moisture content;
 - Particle Size Distribution;
 - Atterberg Limits;
 - 2.5kg Rammer Compaction;
 - One Dimensional Consolidation;
 - Undrained Shear Strength in Triaxial Compression; and
 - Hand Shear Vane Tests.

All tests were performed in accredited geotechnical laboratory and in accordance with the appropriate British Standard.

8.2 Made Ground

8.2.1 Twenty five samples of made ground were sent to the laboratory for analysis. The made ground was described as brown, locally silty to very silty, sandy to very sandy, gravelly to very gravelly clay. The gravel fraction in this horizon consisted of sandstone, mudstone, shale, coal fragments, brick, typical aggregate, concrete, tarmac and ash.

Particle Size Distribution Test

8.2.2 Particle Size Distribution tests were performed on six samples from the made ground. The range in quantities of each soil fraction is shown in Table XII.

Table XII: PSD Made Ground		
Soil Fraction	Total Percentage	
Cobbles	0	
Gravel	12-47	
Sand	6-28	
Silt/Clay	36-77	

Moisture Content

8.2.3 Fourteen samples of made ground were tested for natural moisture content and the results varied between 11% and 36%.

Atterberg Limits

8.2.4 Eight samples from the made ground were tested for determination of Atterberg limits. The majority of the results determined intermediate plasticity material with a plasticity index (PI) ranging between 14% (BH4-2.4m) and 24% (BH7-6.0m). One sample was described as high plasticity material with PI of 30% (BH4-7.0m).

2.5kg Rammer Compaction

8.2.5 Four compaction tests were carried out on made ground samples taken at various depths from boreholes BH4, BH5 and BH6. The results for maximum dry density ranged between 1.82Mg/m³ (BH4, 1.2-2.4mbgl) and 1.87Mg/m³ (BH5, 0.5-2.7mbgl) with optimum moisture contents ranging from 13% (BH6) to 15% (BH4).

One Dimensional Consolidation

8.2.6 Two samples from the made ground were subjected to one dimensional consolidation testing. The results are presented in Table XIII.

Table XIII: ODC Made Ground				
INITIAL CONDITIONS	BH4 4.5m-4.95mbgl	BH7 1.2-1.65m bgl		
Bulk density (g/cm3)	2.04	1.98		
Dry density (g/cm3)	1.68	1.63		
Moisture content (%)	21	22		
Degree of saturation	97.9	90.9		
Void ratio	0.5771	0.6306		

Table XIII: ODC Made Ground						
	BI 4.5m-4	14 95mbgl	BH7 1.2-1.65m bgl			
	COEFFICIENTS		COEFFICIENTS			
PRESSURE RANGE (KPa)	Mv (m2/MN)	Cv (m2/yr)	Mv (m2/MN)	Cv (m2/yr)		
0 – 50	0.235	6.514	0.261	4.547		
50 – 100	0.215	6.368	0.217	6.387		
100 - 200	0.147	14.339	0.152	11.887		
200 – 400	0.105	9.612	0.108	13.848		
400 - 50	0.024	8.668	0.020	7.990		

Undrained Shear Strength in Triaxial Compression

8.2.7 Three samples representing the made ground were subjected to undrained triaxial compression tests. The results are presented in Table XIV.

TABLE XIV: UTS Made Ground			
Depth of Sample, mbgl	ВН	Undrained Shear strength, Cu	
2.5-2.95	4	70	
5.5-5.85	7	66	
7.0-7.45	6	57	

Hand Shear Vane Tests

8.2.8 Hand Shear Vane tests were performed on two samples representing the made ground. Shear Strength values ranged from 84kPa (BH4, 6.5-6.95m) to 92kPa (BH7, 2.2-2.65m).

8.3 Natural Materials - Clay

8.3.1 Twenty six samples representing the natural clay were sent to the geotechnical laboratory. The natural clay was described as, predominantly firm to very stiff, brown, slightly gravelly to very gravelly, sandy to very sandy clay.

Particle Size Distribution Test

8.3.2 Particle Size Distribution tests were performed on five samples from the natural clay. The range in quantities of each soil fraction is shown in Table XV.

Table XV: PSD Natural Materials - Clay		
Soil Fraction	Total Percentage	
Cobbles	0	
Gravel	5-36	
Sand	23-31	
Silt/Clay	37-69	

Moisture content

8.3.3 Thirteen samples of the natural clay were tested for natural moisture content and the results varied between 9.4% and 32%.

Atterberg Limits

8.3.4 Thirteen samples from the natural clay were tested for determination of Atterberg limits. The majority of the results determined low to intermediate plasticity material with a plasticity index (PI) ranging between 9% (BH1-2.5m) and 25% (TP108-0.9m).

2.5kg Rammer Compaction

8.3.5 Two compaction tests were carried out on natural clay samples taken at various depths from trial pits TP111 and TP118. The results for maximum dry density ranged between 2.65Mg/m³ (TP111-2.2mbgl) and 2.68Mg/m³ (TP118-1.4mbgl) with optimum moisture contents ranging from 19% (TP111) to 20% (TP118).

One Dimensional Consolidation

8.3.6 One sample from the natural clay was subjected to one dimensional consolidation testing. The results are presented in Table XVI.

Table XVI: ODC Natural Materials - Clay		
INITIAL CONDITIONS	BH3	
	1.2m-1.65mbgl	
Bulk density (g/cm3)	2.05	
Dry density (g/cm3)	1.66	
Moisture content (%)	24	
Degree of saturation	104.2	
Void ratio	0.6008	

Table XVI: ODC Natural Materials - Clay			
	BH3		
	1.2m-1.65mbgl		
	COEFFI	CIENTS	
PRESSURE RANGE (KPa)	Mv (m2/MN)	Cv (m2/yr)	
0 – 50	0.259	5.057	
50 – 100	0.236	4.932	
100 - 200	0.162	7.248	
200 – 400	0.114	15.148	
400 - 50	0.065	6.916	

Undrained Shear Strength in Triaxial Compression

8.3.7 Seven samples representing the natural clay were subjected to undrained triaxial compression tests. The results are presented in Table XVII.

TABLE XVII: UTS Natural Materials - Clay			
Depth of Sample, mbgl	ВН	Undrained Shear strength, Cu	
1.2-1.65	3	112	
2.0-2.45	1	161	
2.3-2.7	3	183	
3.5-3.95	1	127	
5.7-6.15	5	32	
6.7-7.15	5	48	
8.5-9.15	6	101	

Hand Shear Vane Tests

8.3.8 A Hand Shear Vane test was performed on one sample representing the natural materials. A Shear Strength value of 57kPa was recorded for the sample from BH6, 9.5-9.85mbgl.

8.4 Natural Materials - Gravel

8.4.1 Four samples representing the natural gravel were sent to the geotechnical laboratory. The natural gravel was described as, predominantly, brown, sandy to very sandy, slightly clayey to very clayey, gravel.

Particle Size Distribution Test

8.4.2 Particle Size Distribution tests were performed on two samples from the natural gravel. The range in quantities of each soil fraction is shown in Table XVIII.

Table XVIII: PSD Natural Materials - Gravel		
Soil Fraction	Total Percentage	
Cobbles	0	
Gravel	32-58	
Sand	22-36	
Silt/Clay	20-32	

Moisture content

8.4.3 Two samples of the natural gravel were tested for natural moisture content and the results varied between 7.4% and 9.4%.

Atterberg Limits

8.4.4 One sample from the natural gravel was tested for determination of Atterberg limits. The sample (BH1-6.1m) was described as non-plastic material.

8.5 Standard/Cone Penetration Testing

8.5.1 In addition to laboratory geotechnical testing, in situ standard/cone penetration tests were carried out during the site investigation and the results are summarised in Table XIX.

			ТА	BLE XIX:	RESULTS	FOR STA	NDARD	CONE PI	ENETRAT	ION TEST	rs			
Depth BH1		ВІ	H2	В	BH3		BH4		BH5		BH6		H7	
(m bgl)	N- value	Geol Unit												
1.00			13	MG			45	MG	25	MG	18	MG		
1.50														
2.00			REF	MG					13	MG	REF	MG		
2.50														
3.00														
3.50			18	MG			12	MG						
4.00									8	MG	23	MG		
4.50	REF	Nat.												
5.00	REF	Nat.			20	Nat.			10	MG	15	MG		
5.50							12	MG						
6.00	REF	СМ			24	Nat.					15	MG		
6.50			30	Nat.										
7.00					REF	Nat.								
7.50			REF	Nat.	REF	СМ							REF	СМ
8.00											19	MG		
8.50			REF	СМ					41	Nat.				
9.00							REF	СМ					Ī	
9.50									REF	СМ			Ī	
10.00													1	
10.50											REF	СМ		

Key: MG = Made Ground, Nat. = Natural Materials, CM = Coal Measures, REF = Refusal

At depths where no Standard/Cone Penetration Test results are shown a U100 sample was taken.

- 8.5.2 The table shows that N-values within the made ground range between 8 and Refusal (>50). The N-values in the made ground suggest that the material is highly variable between loose/soft and very dense/very stiff.
- 8.5.3 N-values obtained within underlying natural materials are also highly variable, ranging between 20 and Refusal (>50). There is typically an increase in N value with depth.
- 8.5.4 N-values obtained within the coal measures all show Refusal (>50).

9 REVISED CONCEPTUAL SITE MODEL

9.1 Introduction

9.1.1 In line with current Environment Agency guidance, plausible source, pathway and receptor linkages have been identified for the site. The plausible linkages are indicated in the conceptual site model outlined and discussed below. This conceptual site model is based on the findings of the intrusive site investigation works and associated geochemical testing and is illustrated in Drawing SH10534-009.

9.2 Contamination Sources

- 9.2.1 No significantly elevated contaminant concentrations were identified in soil on site.
- 9.2.2 There are minor elevated concentrations of petroleum hydrocarbons in groundwater at the site.

9.3 Pathways

Human Health

9.3.1 In terms of human health the main pathways are considered to be dermal contact, ingestion and inhalation. Future occupiers and construction workers are likely to be at risk from all three potential pathways whilst working on the site.

Groundwater

- 9.3.2 The main pathway by which contaminants are likely to reach the saturated zone beneath the site is through infiltration of rainwater causing vertical movement through the unsaturated zone.
- 9.3.3 The site investigation has identified and sampled groundwater from the coal measures strata.

9.4 Receptors

9.4.1 A number of sensitive receptors have been identified in close proximity to the site. These receptors are:

- Future human receptors (site occupiers and construction workers);
- Shallow groundwater;
- Surface water in the Hunsworth Beck.

9.5 Summary

- 9.5.1 Based on the land use history and identified sources of contamination, a conceptual site model has been developed. This is shown in Table XX and details the potential sources, pathways and receptors and the inter-relationship of these factors.
- 9.5.2 It is considered that the risks to the proposed development for residential use without any mitigation are as follows.

	TABLE XX		
Source	Pathway	Receptor	Risk
Ground gases (carbon dioxide, methane)	Lateral and vertical migration of gases and inhalation	Construction workers and future occupiers	Low to Moderate
Minor petroleum hydrocarbons in groundwater	Infiltration, advection, diffusion and dispersion	Groundwater and Surface water	Low to Moderate

10 CONCLUSIONS

10.1 General

- 10.1.1 The site history indicates that a sewage works was present on part of the site in 1893. The Valley Pit Coal and Ironstone workings were also present in the west of the site at this time along with an Old Coal pit in the south. A tramway is reported extending across the western part of the site. By 1908 the pits were reported to be closed and the sewage works had expanded. Subsequent maps show further expansion and changes to the layout up until 2004.
- 10.1.2 A total of seven cable percussion boreholes (to a maximum depth of 10.7mbgl), three of which had rotary follow-on (to a maximum depth of 30mbgl), ten window sample boreholes (2.0m to 5.0mbgl) and nineteen trial pits (1.4m-3.6mbgl) were completed as part of this Phase II investigation. Observations from the intrusive work have confirmed the presence of 0.15m and 8.3m thick over the majority of the site, underlain by soft to stiff, orange-brown mottled grey, locally cobbly with rare boulders, sandy, gravelly clay and mudstone bedrock of the Middle Coal Measures geology.
- 10.1.3 Thirty soil and six groundwater samples from across the site were tested for a suite of potential chemicals of concern comprising: volatile and semi-volatile organic compounds; aliphatic, aromatic and polyaromatic hydrocarbons; metals and other inorganic elements.

10.2 Human Health

- 10.2.1 Analytical results were analysed using CLEA methodology to assess the risk to human health in both a residential and a commercial/industrial scenario.
- 10.2.2 The mean concentrations of all determinands across the site are below screening criteria and should not pose a risk to human health for a commercial/ industrial end use.

10.3 Surface Water and Groundwater

10.3.1 The risk to surface water and groundwater is considered to be low to moderate. The recorded concentrations of medium to long chain petroleum hydrocarbons

are elevated with respect to the UKDWS in the southern part of the site, particularly BH6. However, concentrations of petroleum hydrocarbons in groundwater across the site are generally below the LOD and/or UKDWS, therefore the risk to surface water and groundwater can be considered more towards low than moderate.

10.4 Buildings and Property

10.4.1 Results from sulphate (2:1 extract) testing indicate that a worst case design sulphate class of DS-2 and Aggressive Chemical for Concrete (ACEC) class of AC-2 may be appropriate for the site.

Ground Gas

Development Area

10.4.2 The monitoring wells within the development area are characterised by low concentrations of methane (max 1.6%) and moderate concentrations of carbon dioxide (max 3.7%). Using the Wilson and Card classification system and based on the monitoring results, a GSV of 0.015l/hr has been calculated. This corresponds to Characteristic Situation 1 (green or very low risk) classification.

Outside of Development Area – BH5

10.4.3 An exception to the general site trend was borehole BH5 to the south of the site (outside of the proposed development layout) which recorded very high concentrations of methane (max 34.6%) and moderate concentrations of carbon dioxide (max 3.0%). Using the Wilson and Card classification system and based on the monitoring results for BH5, a GSV of 0.071/hr has been calculated. This corresponds to Characteristic Situation 2 for area around BH5. If the area around BH5 is developed in the future then consideration of ground gas protection measures appropriate to Characteristic Situation 2 and/or further monitoring will be required.

10.4.4

10.4.5 Low concentrations of methane, up to 1.6%, and low concentrations of carbon dioxide, up to 1.4% have been reported in one borehole in this area.

- 10.4.6 For a CIRIA Situation A development type, a gassing regime of Characteristic Situation 1 (CS1) can be attributed to this area and no special ground gas protection measures are required.
- 10.4.7 For a CIRIA Situation B development type, a gassing regime of Amber 1 can be attributed to this area which requires low-level gas protection measures, comprising a membrane and ventilated sub-floor void to create a permeability contrast to limit the ingress of gas into buildings. Gas protection measures should be as prescribed in BRE Report 414 (Johnson, 2001). Ventilation of the sub-floor void should facilitate a minimum of one complete volume change per 24 hours.

Ground Gas - Commercial

10.4.8 High concentrations of methane, up to 34.6%, have been reported in one borehole, BH5, and moderate concentrations of carbon dioxide, up to 3.7%, have been reported across the remainder of the site. Through reference to CIRIA C665 a gassing regime of Characteristic Situation 1 (CS1) can be attributed to the commercial area due to low flow rates. However, given the high levels of methane recorded in the south of the site, we would recommend increasing the classification in this area (BH's 4, 5 and 6) to Characteristic Situation 2 (CS2) as a precaution.

Ground Gas Protection Measures

- 10.4.9 The calculation of the GSV using the ground gas data from the monitoring wells at the site indicates a classification of Characteristic Situation 1 and no special ground gas protection measures are required for the development area.
- 10.4.10 Although outside of the development area, the monitoring results from BH5 indicates a classification of Characteristic Situation 2. If the area around BH5 is developed in the future then consideration of ground gas protection measures appropriate to Characteristic Situation 2 and/or further monitoring will be required.

Radon

10.4.11 An initial assessment for radon gas has been carried out. The determination follows the two-stage procedure outlined in *BR211 Radon: Guidance on protective measures for new dwellings (2015)*. The assessment indicates that no specific radon protection measures are required.

10.5 Ecology

10.5.1 The phytotoxic metals arsenic, copper, lead and zinc were analysed against the ECO-SSL threshold values for risk to plants. The results displayed numerous samples to have elevated metals considered likely to hinder plant growth in planned areas of landscaping. These samples were widespread across the site.

10.6 Coal Mining

10.6.1 A Coal Authority report for the site has been obtained, dated 23 November 2010 and is attached at Appendix II, a visit was also made to the Coal Authority abandoned mine records office at Mansfield on 25 November 2010.

Shallow Underground Workings

- 10.6.2 From the enquiries made, examination of the geological information and site investigation observations there is evidence of shallow underground mining activity beneath the south of the site. Reference to the abandonment plans indicate that these shallow workings are likely to be in the Shertcliffe Bed.
- 10.6.3 No intact coal seams were encountered during the investigation. However, there was evidence of broken/soft ground accompanied by loss of flush which may indicate the presence of workings. This broken/soft ground was observed at depths of between 11.3m and 16.7mbgl in borehole BH6. Due to collapse of the borehole, drilling was terminated at 16.7mbgl. Further investigation and stabilisation of the underground conditions with respect to mining is likely to be necessary in this area of the site.

Mine Entries

- 10.6.4 The Coal Authority report has indicated that there are ten recorded mine entries on or within influencing distance of the site. Only one of the mine entries is noted to have had any treatment; entry 417427-005 (to the north west of the site) was treated on behalf of the Coal Authority with mass concrete following its collapse in 1997. Prior to development the mine entries will require location, investigation and stabilisation.
- 10.6.5 Mining constraints on development are indicated on drawing SH10534-008.

10.7 Geotechnical and foundation design

- 10.7.1 The geology of the site is relatively homogenous and comprises made ground (up to 8.4m bgl to the south of the site) underlain by sandy, gravelly clay with occasional layers of very sandy, very clayey gravel of weathered Coal Measures which is in turn underlain by weak to moderate strong mudstone and sandstone of the Coal Measures.
- 10.7.2 As the site is proposed for commercial redevelopment it has been assumed that the commercial units constructed on the site will be steel framed structures with clad walls. These structures typically apply pressure to the ground at the end points of the steel columns and the foundations should be constructed to minimise the effect of applying localised pressure to the ground. Provided that some degree of settlement can be accommodated within the structure, pad or raft foundations should be satisfactory for structures on site founded on the weathered coal measures or on the made ground after ground improvement. Ground bearing floor slabs should be constructed to allow for some differential movement of the ground where pad foundations are employed.
- 10.7.3 Standard Penetration Tests (SPTs) were carried out in all borehole locations at 1m centres. The results obtained from the made ground are highly variable due to the impact that large particles can have on the test results. The tests indicate that the made ground would be unsuitable as a founding medium in its current condition due to this variability and the loose nature of some of the fill materials. Therefore some form of ground improvement would be required, either by excavation and recompaction or dynamic compaction, where foundations cannot be placed on the solid Coal Measures.
- 10.7.4 The weathered Coal Measures are described as firm to very stiff with undrained shear strength values in the range 32kPa to 161kPa and SPT n-values ranging from 30 to Refusal (>50). The tests indicate that the weathered Coal Measures across the majority of the site would be suitable as a founding medium in their current condition.
- 10.7.5 The shear strength of the weathered Coal Measures suggests C_u values for firm to very stiff clay which may be suitable for allowable bearing pressures up to 125kPa-250kPa. The results of consolidation testing suggest that these materials demonstrate low to medium compressibility and that, at the allowable bearing

pressure above, settlement should be restricted to less than 25mm. Detailed analysis of foundations should be carried out to ensure that the design loads for a particular building can be accommodated and that both total and differential settlements at design loads can be tolerated by the proposed structure.

- 10.7.6 Monitoring of boreholes on site indicates that groundwater is approximately 2m to 9m below ground level. Based on the site topography the groundwater level is fairly consistent across the site and is considered to be the natural groundwater level in the weathered Coal Measures. Caution may be required where foundations are constructed close to the water table.
- 10.7.7 As an alternative, piled foundations might be suitable to the south of the site where made ground thicknesses are up to 8.3m but consideration should be given to ground settlement around the structures if no other ground treatment was carried out. There would also likely be negative skin friction loads on piles caused by this settlement and these should be considered in any design.

11 **RECOMMENDATIONS**

11.1 Contamination

11.1.1 No elevated concentrations of contaminants were identified on site and, therefore, there is unlikely to be a significant risk to long term human health given a commercial land use.

11.2 Mining

- 11.2.1 Further investigation of the mining setting of the site is recommended. This is likely to take the form of further rotary open-hole drilling to the south of the site and exploratory excavation of areas around potential mine shaft locations. Drawing SH10534-008 shows the location of shafts and likely shallow mining.
- 11.2.2 There are a number of constraints to development as shown on Drawing SH10534-008, of which the mining position and existing structures represent the most significant elements from a construction viewpoint. Once broad architectural layouts are available, it would be useful to compare with existing site constraints in order to determine remedial options and costs.

11.3 Ground Gas

11.3.1 Gas protection measures are recommended as a precaution in the southern area of the site (CS2) to address high levels of methane recorded in this area. No gas protection is required over the remainder of the site.

APPENDIX I

Standard Terms and Conditions and Limitations to Reports

STANDARD TERMS AND CONDITIONS AND LIMITATIONS TO REPORTS

This report is provided for the stated purpose and for the sole use of the client. It is confidential to the client and his professional advisors and cannot be shown to any other party without prior written consent. Wardell Armstrong LLP accepts no responsibility whatsoever to any person other than the client.

The findings of this report are based upon information relating to the property supplied by the client or their agents. The information has been accepted and used in good faith and unless otherwise stated, no attempt has been made to verify the information supplied. Should any of these factors or information change then the conclusions of the report may need to be amended.

The findings and recommendations are considered to be valid and appropriate at the time of preparation and for the specific purpose or purposes intended. Wardell Armstrong LLP will not be liable if any findings are used by third parties, without the written agreement of the company, or if an interpretation is made and action taken without further consultation.

APPENDIX II

Coal Authority Report

Issued by:

The Coal Authority, Mining Reports Office, 200 Lichfield Lane, Berry Hill, Mansfield, Nottinghamshire NG18 4RG ON-Line Service: www.groundstability.com - Phone: 0845 762 6848 - DX 716176 MANSFIELD 5

Person dealing with this matter:	Darren Moody
Our reference:	00052445-10
Your reference:	33198658
Electronic Ref:	EME_00014987250003_005
RRUID:	005.00014987250003
Date of your enquiry:	23 November 2010
Date we received your enquiry:	23 November 2010
Date of issue:	24 November 2010
	Our reference: Your reference: Electronic Ref: RRUID: Date of your enquiry: Date we received your enquiry:

This report is for the property described in the address below and the attached plan.

Non-Residential Coal and Brine Report

Site At, North Bierley Works, Bradford Road, Oakenshaw, Bradford, West Yorkshire

This report is based on and limited to the records held by, the Coal Authority, and the Cheshire Brine Subsidence Compensation Board's records, at the time we answer the search.

Coal mining	Yes
Brine Compensation District	No

Information from the Coal Authority

Underground Coal Mining

Past

The property is in the likely zone of influence from workings in 3 seams of coal at shallow to 120m depth, and last worked in 1929.

Present

The property is not in the likely zone of influence of any present underground coal workings.

Future

The property is not in an area for which the Coal Authority is determining whether to grant a licence to remove coal using underground methods.

The property is not in an area for which a licence has been granted to remove coal using underground methods.

All rights reserved. You must not reproduce, store or transmit any part of this document unless you have our written permission.

© The Coal Authority CON29M Non-Residential 00052445-10 The property is not in an area that is likely to be affected at the surface from any planned future workings.

However reserves of coal exist in the local area which could be worked at some time in the future.

No notice of the risk of the land being affected by subsidence has been given under section 46 of the Coal Mining Subsidence Act 1991.

Mine entries

Within, or within 20 metres of, the boundary of the property there are 10 mine entries, the approximate positions of which are shown on the attached plan.

Coal Authority records disclose the following information:

418427-005. No treatment details.

417427-001. No treatment details.

417427-002. No treatment details.

417427-015. No treatment details.

417427-005. after collapsing in 1997 was plugged with mass concrete by IMC Ltd. on behalf of the Coal Authority in September 1997 $\,$.

418427-011. No treatment details.

417427-004. No treatment details.

417427-003. No treatment details.

417427-014. No treatment details.

417427-016. No treatment details.

Records may be incomplete. Consequently, there may exist in the local area mine entries of which the Coal Authority has no knowledge.

Coal-mining geology

The Authority is not aware of any evidence of damage arising due to geological faults or other lines of weakness that have been affected by coal mining.

Opencast Coal Mining

Past

The property is not within the boundary of an opencast site from which coal has been removed by opencast methods.

Present

The property does not lie within 200 metres of the boundary of an opencast site from which coal is being removed by opencast methods.

Future

The property is not within 800 metres of the boundary of an opencast site for which the Coal Authority is determining whether to grant a licence to remove coal by opencast methods.

The property is not within 800 metres of the boundary of an opencast site for which a licence to remove coal by opencast methods has been granted.

Coal-mining subsidence

The Coal Authority has not received a damage notice or claim for the property since 1 January 1984. There is no current Stop Notice delaying the start of remedial works or repairs to the property.

The Authority is not aware of any request having been made to carry out preventive works before coal is worked under section 33 of the Coal Mining Subsidence Act 1991.

Mine gas

There is no record of a mine gas emission requiring action by the Coal Authority within the boundary of the property.

Hazards related to coal mining

The property has been subject to remedial works, by or on behalf of the Authority, under its Emergency Surface Hazard Call Out procedures.

Withdrawal of Support

The property is not in an area for which a notice of entitlement to withdraw support has been published.

The property is not in an area for which a notice has been given under section 41 of the Coal Industry Act 1994, revoking the entitlement to withdraw support.

Working Facilities Orders

The property is not in an area for which an Order has been made under the provisions of the Mines (Working Facilities and Support) Acts 1923 and 1966 or any statutory modification or amendment thereof.

Payments to Owners of Former Copyhold Land

The property is not in an area for which a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994.

Comments on Coal Authority information

In view of the mining circumstances a prudent developer would seek appropriate technical advice before any works are undertaken.

Therefore if development proposals are being considered, technical advice relating to both the investigation of coal and former coal mines and their treatment should be obtained before beginning work on site. All proposals should apply good engineering practice developed for mining areas. No development should be undertaken that intersects, disturbs or interferes with any coal or mines of coal without the permission of the Coal Authority. Developers should be aware that the investigation of coal seams/ former mines of coal may have the potential to generate and/or displace underground gases and these risks both under and adjacent to the development should be fully considered in developing any proposals. The need for effective measures to prevent gases entering into public properties either during investigation or after development also needs to be assessed and properly addressed. This is necessary due to the public safety implications of any development in these circumstances.

The attached plan shows the approximate location of the disused mine entry/entries referred to in this report. For reasons of clarity, mine entry symbols may not be drawn to the same scale as the plan. Property owners have the benefit of statutory protection (under the Coal Mining Subsidence act 1991*). This contains provision for the making good, to the reasonable satisfaction of the owner, of physical damage from disused coal mine workings including disused coal mine entries. A leaflet setting out the rights and the obligations of either the Coal Authority or other responsible persons under the 1991 Act can be obtained by telephoning 0845 762 6848 or online at www.coal.gov.uk/services/subsidence. If you wish to discuss the relevance of any of the information contained in this report you should seek the advice of a qualified mining engineer or surveyor. If you or your adviser wish to examine the source

plans from which the information has been taken these are normally available at our Mansfield office, free of charge, by prior appointment, telephone 01623 637233. Should you or your adviser wish to carry out any physical investigations that may enter, disturb or interfere with any disused mine entry the prior permission of the owner must be sought. For coal mine entries the owner will normally be the Coal Authority.

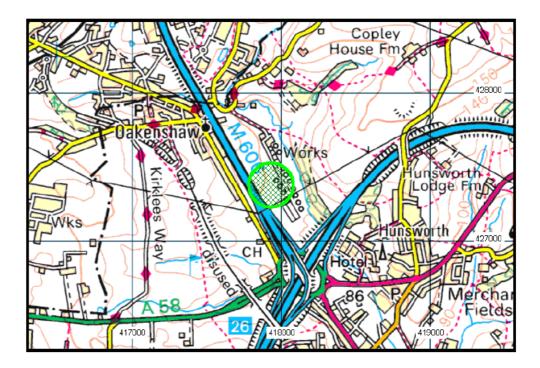
The Coal Authority, regardless of responsibility and in conjunction with other public bodies, provide an emergency call out facility in coalfield areas to assess the public safety implications of mining features (including disused mine entries). Our emergency telephone number at all times is 01623 646333.

*Note, this Act does not apply where coal was worked or gotten by virtue of the grant of a gale in the Forest of Dean, or any other part of the Hundred of St. Briavels in the county of Gloucester.

Information from the Cheshire Brine Subsidence Compensation Board

The property lies outside the Cheshire Brine Compensation District.

Additional remarks


This report is prepared in accordance with the Law Society's Guidance Notes 2006, the User Guide 2006 and the Coal Authority and Cheshire Brine Board's Terms and Conditions 2006. The report is compliant with Home Information Pack requirements.

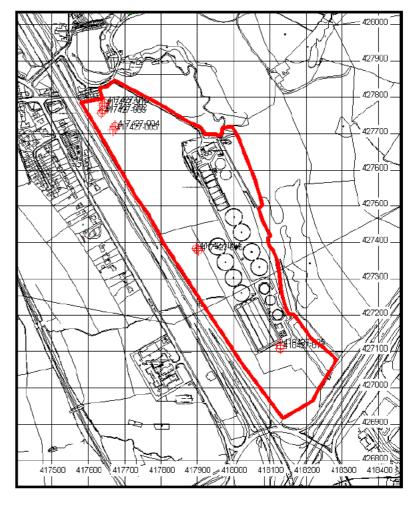
The Coal Authority owns the copyright in this report. The information we have used to write this report is protected by our database right. All rights are reserved and unauthorised use is prohibited. If we provide a report for you, this does not mean that copyright and any other rights will pass to you. However, you can use the report for your own purposes.

Location map

Approximate position of property

Enquiry boundary

These maps are reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. The Coal Authority. Licence number: 100020315. [2006]



Approximate position of enquiry boundary shown

Disused Adit or Mineshaft

⇒ ⊕

© The Coal Authority CON29M Non-Residential 00052445-10

Page 5 of 6

Printed: 24 Nov 2010

This page is intentionally blank

APPENDIX III

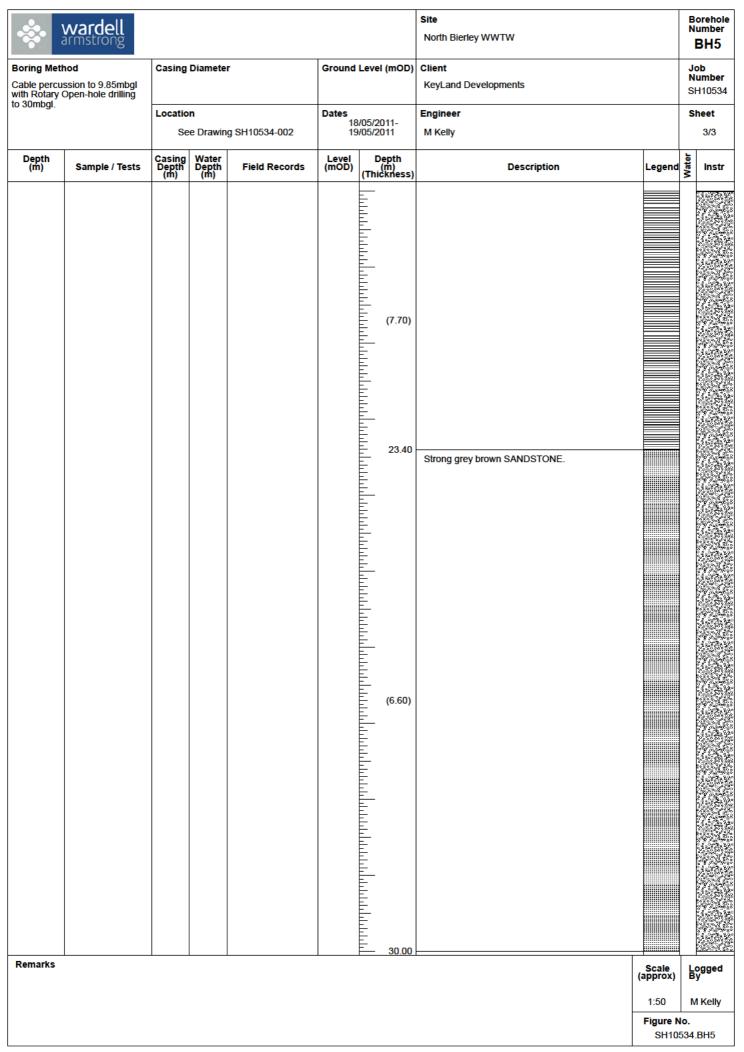
Borehole Logs

*** }	wardell armstrong						Site North Bierley WWTW		Nu	orehole umber BH1
Boring Meth Cable Percu		Casing	Diamete	r	Ground	Level (mOD)	Client KeyLand Developments			ob umber 110534
		Location See Drawing SH10534-002			Dates 16/05/2011		Engineer M Kelly		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
						(0.15) 0.15	Loose dark brown slightly clayey SAND (TOPSOIL).			· · · · · ·
0.20 0.30-0.80	D1 B2					(0.65)	Firm dark brown sandy gravelly CLAY. Gravel of angular-subrounded sandstone and coal fragments.			
0.80 0.85-1.20	D3 B4						Firm orange brown sandy CLAY.			
1.20-1.65	U5			68 blows		(1.10)				
1.70 1.90	D6 D7					L 1.90				
2.00-2.45	U8			83 blows			Firm-Stiff brown sandy gravelly CLAY. Gravel of angular-subrounded sandstone and shale.		0 11 10 1 1 1	
2.50 2.50-3.00	D9 B10							**************************************	2 2 11 12 E	
3.00-3.20 3.00-3.20	B11 U			100 blows						
3.50-3.95	U12			100 blows		(3.20)				
4.00	D10					E_				
4.00	D13									
4.50-4.95 4.50-4.95 4.50-5.00	SPT N=53 S14 B15			5,8/9,11,14,19						
5.10 5.20-5.65 5.20-5.65 5.20-6.10	D16 SPT N=52 S18 B17			4,9/10,12,14,16		5.10 	Dense grey sandy GRAVEL of weatehred sandstone, mudstone and shale.			
								,		
6.10 6.20-6.65 6.20-6.40	D19 SPT N=50 S20			16,9/31,19		6.10 (0.30) 6.40	Strong orange brown grey SANDSTONE.			
							Complete at 6.40m			
Remarks								Scale (approx)	Lo	ogged
								1:50		, Kelly
								Figure N SH10		BH1

Boring Method Cable Percussion Depth (m) Sample / Tests 0.20 D1 0.50-1.00 B2 1.20-1.65 SPT(C) N=13 C C SPT(C) N=13 C C SPT(C) N=13 C C SPT(C) N=50 C SPT(C) N=50 C SPT(C) N=50 C SPT(C) N=50 C SPT(C) N=50 SPT N=18 S50-3.95 SPT N=18 S9 S0-4.90	Casing Diamete Location See Drawir Casing Depth (m) Water Depth (m)	r Ig SH10534-002 Field Records 1,2/3,3,3,4 4,7/11,18,21	Dates	Level (mOD)	KeyLand Developments Engineer M Kelly Description Loose dark brown slightly clayey SAND (TOPSOIL). MADE GROUND: Soft brown sandy gravelly CLAY. Gravel of sandstone aggregate, sandstone and brick.	Job Number SH1053 Sheet 1/1 Legend
(m) Sample / Tests 0.20 D1 0.50-1.00 B2 1.20-1.65 SPT(C) N=13 C B3 1.20-1.65 C 1.20-1.65 SPT(C) N=50 C B5 2.00-2.45 SPT(C) N=50 C B5 2.00-2.60 B5 2.60 D6 B7 3.40 B8 3.50-3.95 3.50-3.95 SPT N=18 S9	See Drawir	Field Records	16 17	7/05/2011 Depth (m) (Thickness)	M Kelly Description Loose dark brown slightly clayey SAND (TOPSOIL). MADE GROUND: Soft brown sandy gravelly CLAY. Gravel of sandstone aggregate, sandstone and brick.	1/1
(m) Sample / Tests 0.20 D1 0.50-1.00 B2 1.20-1.65 SPT(C) N=13 C B3 1.20-1.65 C 1.20-1.65 SPT(C) N=50 C B5 2.00-2.45 SPT(C) N=50 C B5 2.00-2.60 B5 2.60 D6 B7 3.40 B8 3.50-3.95 3.50-3.95 SPT N=18 S9	Casing Depth Depth (m)	1,2/3,3,3,4	Level (mOD)	(ṁ) (Thickness)	Loose dark brown slightly clayey SAND (TOPSOIL). MADE GROUND: Soft brown sandy gravelly CLAY. Gravel of sandstone aggregate, sandstone and brick.	Legend
0.50-1.00 B2 1.20-1.65 SPT(C) N=13 1.20-1.65 C 1.20-1.70 B3 1.70 D4 2.00-2.45 SPT(C) N=50 2.00 C 2.00-2.60 B5 2.60 D6 2.60-3.40 B7 3.40 D8 3.50-3.95 SPT N=18 3.50-3.95 S9				(0.15) 0.15 (1.55)	MADE GROUND: Soft brown sandy gravelly CLAY. Gravel of sandstone aggregate, sandstone and brick.	
4.50-4.90 U11 4.90 D12 5.20-5.65 U13 5.70 D14 5.70 D14 5.20-5.65 U13 5.70 D14 5.20-5.65 U13 5.70 D14 5.20-6.40 U 5.40-6.50 D15 5.60-7.05 SPT N=30 5.60-7.10 S16 B17 S16 7.60-8.00 S18 7.60-8.10 B19 3.40 D20 3.50-8.95 SPT N=50 3.50-8.80 B21		2,3/4,4,5,5 100 blows 78 blows 5,7/8,6,8,8 3,9/9,11,12,18 17,8/38,12		(0.15) 0.15 0.15 (1.55) 1.70 (0.90) 1.70 (0.90) 1.70 (0.90) 1.70 (0.80) 1.40 (1.40) (1.40) (1.40) (1.90) (1.90) (1.90) (1.90) (0.40) 8.40 (0.40) 8.80	MADE GROUND: Dense grey brown slightly clayey sandy gravel of sandstone, mudstone, coal fragments and rare brick with cobbles and boulders of sandstone and mudstone. MADE GROUND: Concrete. MADE GROUND: Medium Dense grey sandy gravel of shale. Firm-Stiff orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone. Stiff orange brown mottled grey slightly cobbly gravelly very sandy CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone. Stiff orange brown mottled grey slightly cobbly gravelly very sandy CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone. Stiff orange brown mottled grey slightly cobbly gravelly very sandy CLAY with rare boulders. Storng orange brown weathered SANDSTONE. Complete at 8.80m	
Remarks					Scale (approx)	Logged By
					1:50 Figure	M Kelly

W20

	wardell armstrong						Site North Bierley WWTW	Borehole Number BH3	
Boring Meth Cable Percu		Casing	Diamete	r	Ground	Level (mOD)	Client KeyLand Developments	Job Number SH10534	
			Location See Drawing SH10534-002		Dates 17/05/2011		Engineer M Kelly	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kegend Sate	
0.20 0.50-1.00 1.10 1.10-1.70 1.20-1.65 1.70 2.10-2.30 2.30-2.70 2.70 3.30-3.75 3.80 4.30-4.40 4.30-4.40 4.30-4.70 4.70-5.15 4.70-5.15 4.70-5.15 5.70-6.15 5.70-6.15 5.70-6.15 5.70-6.20 6.70-7.15 6.70-7.00 6.70-7.05 7.60-8.05 7.60-7.75	D1 B2 D3 B6 U4 D5 D7 U8 D9 U10 D11 U B12 SPT N=20 S13 B14 SPT N=20 S13 B14 SPT N=20 S13 B14 SPT N=20 S13 B14 SPT N=50 B18 S17 D19 SPT N=50 S21			54 blows 100 blows 95 blows 2,3/5,4,5,6 3,4/4,6,6,8 3,6/8,9,33 20,5/50		(0.20) 0.20 (0.90) 1.10 (6.50) 7.75	Loose dark brown slightly clayey SAND (TOPSOIL). Firm orange brown mottled grey slightly cobbly gravelly very sandy CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone. Firm-Stiff orange brown mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone. Very sandy with increasing gravel and cobbles from 3.5m. Strong brown SANDSTONE. Complete at 7.75m		
Remarks							Scale (approx		
							1:50 Figure SH1	M Kelly No. 0534.BH3	


	wardell						Site North Bierley WWTW	Boreh Numb BH	ber
Boring Meth	od	Casing	Diamete	r	Ground	Level (mOD)	Client	Job Numb	per
vith Rotary C	ssion to 9mbgl Open-hole drilling						KeyLand Developments	SH10	
o 30mbgl.		Locatio	n		Dates	7/05/0044	Engineer	Sheet	t
Depth Oracle (Teste		See Drawing SH10534-002			17/05/2011- 19/05/2011		M Kelly		3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	d
						(0.15)	Loose dark brown slightly clayey SAND (TOPSOIL).		5
.20	D1					0.15	MADE GROUND: Firm orange brown sandy gravelly clay. Gravel of sandstone, mudstone, coal fragments, shale and		ŝ
0.50	B2					(0.15) 0.15	brick.		XXXXX
									XXXXX
.20-1.65	SPT(C) N=45			4,6/9,9,11,16					XXXX
.20 .20-1.00	B3 C					(2.85)			XXXX
									XXXX
2.00-2.40	B4								XXXX
2.40	D5			00 blave					XXXX
2.50-2.95	U6			80 blows					XXXX
.00	D7					3.00	MADE GROUND: Soft-Firm grey orange brown sandy		XXEX
							gravely clay. Gravel of sandstone, mudstone, coal fragments and rare		
.50-3.95 .50-3.95	SPT(C) N=12 C			1,2/3,2,3,4			brick with organic debris observed at 6.3m.		XXXX
.50-4.00	B8								222
									22
.50-4.95	U9			62 blows					XXXX
1.30-4.95	09			62 DIOWS					XXXX
5.00	D10					(4.20)			XXXX
						F			
5.50-5.95 5.50-5.95	SPT(C) N=12 C			2,2/2,3,3,4					XXXX
5.50-6.00	B11								XXXX
									XXXX
.50-6.95	U12			85 blows					
.00	D13					- - - 7.20			XXXX
7.20 7.20-7.60	D14 B15						Firm-Stiff orange brown mottled grey slightly cobbly sandy gravelly CLAY with rare boulders.	· · · · · ·	
.30-7.75	U16			80 blows		(0.90)	Gravel, cobbles and boulders of angular-subrounded sandstone.		-
7.80	D17								
3.10 3.20-8.40	D18 U			100 blows		8.10	Stiff orange brown mottled grey sandy gravelly CLAY. Gravel of angular-subrounded mudstone and shale.	<u>.</u>	
3.20-8.70	B19					(0.60)		<u> </u>	
3.70-9.15 3.70	SPT N=50 D20			7,11/22,28		8.70	Weak grey MUDSTONE.		
3.70-9.00	S21								
						T. 7.20			
						F			
Remarks							Scale (approx)	Logge By	ad
							1:50	M Kel	lly
							Figure	No.	

Independencies of single statistication of singl	*** \	wardell Irmstrong						Site North Bierley WWTW		Borehole Number BH4
Some of the second se	Cable percus vith Rotary C		Casing	Diamete	r	Ground	Level (mOD)			Job Number SH10534
Remarks Image: Strong grey MUDSTONE with satisfune bands. Image: Strong grey MUDSTONE with satisfune bands. Image: Strong grey MUDSTONE with satisfune bands.	o 30mbgl.				g SH10534-002	17	7/05/2011- 9/05/2011			
Remarks	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
(approx) By 950 1:50 M Kelly									S.	
	Remarks							(ar	Scale pprox)	Logged By
										M Kelly

	wardell rmstrong						Site North Bierley WWTW		Borehol Number BH4
oring Metho able percuss ith Rotary O	od sion to 9mbgl pen-hole drilling	Casing	Diameter	r	Ground	Level (mOD)	Client KeyLand Developments		Job Number SH1053
30mbgl.		Location Se		g SH10534-002	Dates 17 19	7/05/2011- 9/05/2011	Engineer M Kelly		Sheet 3/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
Remarks							Strong grey brown SANDSTONE.	Scale	
lemarks								Scale (approx)	Logged By
								1:50	M Kelly
								Figure N	lo. 534.BH4

	wardell armstrong						Site North Bierley WWTW		Ν	orehole umber BH5
with Rotary (nod ssion to 9.85mbgl Open-hole drilling	Casing	Diamete	r	Ground	l Level (mOD)	Client KeyLand Developments		Ν	ob umber H10534
to 30mbgl.		Locatio Se		g SH10534-002		8/05/2011- 9/05/2011	Engineer M Kelly		S	heet 1/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.20 0.50-1.00	D1 B2					(0.10) 0.10	Loose dark brown slightly clayey SAND (TOPSOIL). MADE GROUND: Medium Dense brown slightly clayey gravelly cobbly sand.			* 0 • • • • • •
1.20-1.65 1.20-1.65 1.20-1.70	SPT(C) N=25 C B3			4,5/7,7,5,6			Gravel and cobbles of brick, concrete, mudstone and sandstone.			
2.20-2.65 2.20-2.65 2.20-2.70	SPT(C) N=13 C B4			1,3/2,3,3,5		(5.10)				
2.95 3.20-3.50 3.20-3.50	W6 B5 U			100 blows						
4.00-4.45 4.00-4.45 4.00-4.50	SPT(C) N=8 C B7			2,1/2,1,2,3						
5.00-5.45 5.00-5.45 5.00-5.50 5.30	SPT(C) N=10 C B8 D9			1,1/2,2,3,3		5.20	MADE GROUND: Soft dark grey clayey silt with a little organic debris.			
5.70-6.15 5.80-6.50	U10 B12			58 blows		5.80	Firm-Stiff orange brown mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.			
6.20 6.70-7.15	D11 U13			87 blows		(1.70)				
7.20 7.50 7.70-8.15	D14 D15 U16			93 blows		(0.50) 8.00	Stiff brown mottled grey sandy gravelly CLAY. Gravel of angular-subrounded mudstone and shale.			
8.20 8.50-8.95 8.50-8.95 8.50-9.00	D17 SPT N=41 S18 B19			4,8/9,8,10,14		(0.60)	Stiff dark brown mottled grey sandy gravelly CLAY. Gravel of angular-subrounded sandstone.			
9.50-9.95 9.50-9.85	SPT N=50 S20			9,13/16,18,16		9.40	Weak grey brown MUDSTONE.			
Remarks	L	1		I	1	<u> </u>		Scale (approx)	L	ogged y
								1:50 Figure N SH10	lo.	I Kelly .BH5

Indee yoursetsion 10 3 65mg Indee yourset Review Engineer Review Image: Sec 10 and Sec 10	ke wardel	ll g						Site North Bierley WWTW		Nu	orehole umber BH5
Location Date: Instruction Description Serie (France) Operation Technology Technology <t< th=""><th>Boring Method Cable percussion to 9.85 with Rotary Open-hole dri o 30mbol</th><th>I</th><th>Casing I</th><th>Diameter</th><th>r</th><th>Ground</th><th>Level (mOD)</th><th></th><th></th><th>Nu</th><th>umber</th></t<>	Boring Method Cable percussion to 9.85 with Rotary Open-hole dri o 30mbol	I	Casing I	Diameter	r	Ground	Level (mOD)			Nu	umber
Remarks	o oombyi.	L			g SH10534-002	Dates 18 19	8/05/2011- 9/05/2011			Sł	
Remarks	Depth (m) Sample / `	Tests I	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1:50 M Kelly Figure No.	Remarks						(6.30)	Medium Strong grey MUDSTONE with siltstone bands.			
Figure No.	Remarks										
											Kelly

	wardell armstrong						Site North Bierley WWTW		Borehole Number BH6
with Rotary C	od ssion to 10.7mbgl Open-hole drilling	Casing	Diamete	r	Ground	Level (mOD)	Client KeyLand Developments		Job Number SH10534
to 30mbgl.		Locatio Se		g SH10534-002		8/05/2011- 0/05/2011	Engineer M Kelly		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Nate Instr
0.25 0.50-1.00	D1 B2					(0.10) 0.10	Loose dark brown slightly clayey SAND (TOPSOIL). MADE GROUND: Medium Dense brown slightly clayey gravelly cobbly sand. Gravel and cobbles of brick, concrete, mudstone		
1.20-1.65	SPT(C) N=18			244255			Gravel and cobbles of brick, concrete, mudstone and sandstone.		
1.20-1.65 1.20-1.70 1.80	C B3 D4			3,4/4,3,5,6					
2.20-2.65 2.20-2.52 2.20-2.90	SPT(C) N=50 C B5			3,5/6,20,24		(4.90)			
3.20-3.60 3.60	U6 D7			100 blows					
4.20-4.65 4.20-4.65 4.20-4.70 4.80	SPT(C) N=23 C B8 D9			3,3/4,4,7,8					
5.20-5.65 5.20-5.65 5.20-5.70	SPT(C) N=15 C B10			1,1/2,4,4,5			MADE GROUND: Firm orange grey brown sandy gravelly CLAY. Gravel and cobbles of mudstone and sandstone.		
6.20-6.65 6.20-6.65 6.20-6.70	SPT(C) N=15 C B11			3,2/4,3,4,4					
6.90 7.00-7.45	D12 U13			61 blows		6.90	MADE GROUND: Firm grey brown slightly gravelly sandy CLAY. Gravel of shale.	'	
7.50	D14					(1.50)			
8.00-8.45 8.00-8.40 8.00-8.45 8.40 8.50-8.95	SPT(C) N=19 B15 C D16 U17			2,3/3,4,6,6 90 blows		6.90 (1.50) 8.40 (2.10)	Stiff orange brown mottled grey sandy gravelly CLAY.		
9.00 9.00-9.50	D18 B19						Gravel of angular-subrounded sandstone.		
9.50-9.85 9.85	U20 D21			100 blows		(2.10)			
Remarks	UZI				1	F	1		2.5 J. 6. 6.
Nemains								Scale (approx)	Logged By
								1:50 Figure N	M Kelly
								-	534.BH6

	wardell rmstrong						Site North Bierley WWTW		Nu	orehole umber 3H6
Boring Mether Cable percus with Rotary O	od sion to 10.7mbgl pen-hole drilling	Casing	Diamete	r	Ground	Level (mOD)	Client KeyLand Developments			ob umber 110534
to 30mbgl.		Locatio Se		g SH10534-002	Dates 18 20	3/05/2011- 0/05/2011	Engineer M Kelly		Sh	2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.40-10.85	SPT N=50 S22			10,14/25,25		(2.10) 10.50 (0.20) 10.70 (0.60) 11.30 (5.40) 16.70	Medium Strong brown SANDSTONE. Weak brown grey weathered MUDSTONE. Soft ground; possible workings. Complete at 16.70m			
Remarks		1			1	1	(4	Scale approx)	Lo By	ogged /
							-	1:50 Figure N		Kelly
								SH105		BH6

-\$*• }	wardell armstrong						Site North Bierley WWTW		N	orehole umber BH7
Boring Meth Cable Percus		Casing	Diamete	r	Ground	Level (mOD)	Client KeyLand Developments		N	ob umber H10534
		Location See		g SH10534-002	Dates 19	9/05/2011	Engineer M Kelly		Sł	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.30 0.50-1.00 1.20-1.65 1.70 2.20-2.65 2.70 3.20-3.35 3.20-3.60 3.60-4.05 4.10 4.30 5.00 5.50-5.85 6.00 6.00-6.50 6.30-6.70 6.90 7.10-7.40 7.40-7.85 7.40 7.40-7.80	D1 B2 U3 D4 D5 U6 D7 U8 U9 D10 D11 B12 U13 D14 U15 D16 B17 U18 D19 U20 SPT N=50 D21 S22			88 blows 77 blows 100 blows 100 blows 100 blows 100 blows 100 blows 6,8/10,12,15,13		(0.30) 0.30 (0.4.00) (4.00) (1.70) (1.40) 7.80	Loose dark brown slightly clayey SAND (TOPSOIL). MADE GROUND: Firm-Stiff orange brown mottled grey sandy gravelly CLAY. Gravel of sandstone, mudstone, shale, ash and brick. MADE GROUND: Medium Dense dark grey slightly clayey sandy gravel of mudstone and shale. Stiff orange brown mottled grey sandy gravelly CLAY. Gravel of angular-subrounded sandstone and shale. Medium Strong brown grey weathered SANDSTONE. Complete at 7.80m			
Remarks					<u> </u>	<u>F</u>	1	Scale (approx)	Lc B	ogged y
								1:50		I Kelly
								Figure N SH10		BH7

APPENDIX IV

Windowless Sample Logs

*** }	wardell armstrong					Site North Bierley WWTW	Number WS101
Excavation Drive-in Win	Method dow Sampler	Dimensi	ons	Ground	Level (mOD)	Client KeyLand Developments	Job Number SH10534
		Location See	Drawing SH10534-002	Dates 16	6/05/2011	Engineer M Kelly	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Safe
0.40	D					Loose brown slightly gravelly slightly clayey SAND (TOPSOIL). Gravel of sandstone aggregate, rare brick and concrete. MADE GROUND: Loose-Medium Dense light grey slightly sandy cobbly gravel of concrete. Firm brown slightly gravelly sandy CLAY. Gravel of angular-subrounded sandstone and mudstone.	
Remarks						Scale (approx	
						1:40 Figure SH10	M Kelly No. 534.WS101

•	wardell armstrong					Site North Bierley WWTW			umber S102
Excavation Drive-in Wir	Method ndow Sampler	Dimensi	ons	Ground	Level (mOD)	Client KeyLand Developments			b umber 110534
		Location See	Drawing SH10534-002	Dates 16	6/05/2011	Engineer M Kelly		Sł	neet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.70	D				(0.10) 0.10 0.10 0.10 0.15 0.25 (0.15) 0.40 (0.20) 0.60 (0.40) 1.00	Loose brown slightly clayey SAND (TOPSOIL). MADE GROUND: Loose grey slightly sandy grave of limestone aggregate. MADE GROUND: Dense red gravelly cobbles of brick. MADE GROUND: Medium strong orange fine grained sandstone. Firm dark grey slightly gravelly sandy CLAY. Gravel of coal fragments. Soft brown slightly sandy slightly gravelly CLAY. Gravel of angular-subrounded sandstone. Soft orange sandy gravelly CLAY. Gravel of angular-subrounded sandstone, mudstone and coal fragments. Soft-Firm orange mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone, mudstone and coal fragments. Stiff grey slightly sandy gravelly CLAY. Gravel of angular-subrounded mudstone. Weak grey MUDSTONE. Complete at 5.00m			
Remarks	1	I		_1			Scale (approx)	Lo By	ogged /
							1:40 Figure N		Kelly
							SH1053		S102

	wardell rmstrong					Site North Bierley WWTW	Numbe	
Excavation M Drive-in Wind		Dimensi	ons	Ground	Level (mOD)	Client KeyLand Developments	Job Numbe SH1053	
		Location See	Drawing SH10534-002	Dates 16	6/05/2011	Engineer M Kelly	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.30	D				(0.40)	MADE GROUND: Firm brown slightly sandy gravelly clay. Gravel of sandstone aggregate, brick, sandstone and concrete. Firm brown sandy gravelly CLAY. Gravel of angular-subrounded sandstone, mudstone and coal fragments. Increasing strength with depth. Decreasing sand with depth.		
Remarks						Scale (approx)	Logged By	đ
						1:40	M Kelly	
						Figure I	No. 34.WS103	

Example De number de la construit de la constr		wardell armstrong					Site North Bierley WWTW			^{umber} S104
Note Note <th< th=""><th></th><th></th><th>Dimensi</th><th>ons</th><th>Ground</th><th>Level (mOD)</th><th></th><th></th><th>N</th><th>umber</th></th<>			Dimensi	ons	Ground	Level (mOD)			N	umber
0.40 D 0.40 D MADE CACOUND. Firm thrown slightly sandy gravely classes, sandstone aggregate and gravely classes, sandstone and gravely classes,					Dates 16	6/05/2011			SI	
0.40 D D Image: Constraint of the constraint o	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
(approx) By 1:40 M Kelly	0.40	D				0.75 (0.75) 1.50 (0.30) 1.80 (2.70) 4.50 (0.50) 5.00	gravelly clay. Gravel of sandstone, sandstone aggregate and mudstone. MADE GROUND: Soft black slightly sandy gravelly clay. Gravel of angular-subangular mudstone. Soft-Firm dark grey slightly sandy gravelly CLAY. Gravel of angular-subangular mudstone. Firm orange mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone. Firm orange mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone. Firm grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone.			
	Remarks					<u>F</u>		Scale (approx)	Lo	ogged y
SH10534.WS104								Figure N	lo.	-

-\$*	wardell armstrong					Site North Bierley WWTW			^{umber} S105
Excavation Drive-in Win	Method dow Sampler	Dimensi	ons	Ground	Level (mOD)	Client KeyLand Developments		N	ob umber 110534
		Location See	Drawing SH10534-002	Dates 16	6/05/2011	Engineer M Kelly		SI	heet 1/1
Depth (m)	Sample / Tests	Water Depth (M)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.30	D					MADE GROUND: Soft grey slightly sandy gravelly clay. Gravel of sandstone, sandstone aggregate, wood fragments, mudstone and rare brick. Firm orange brown mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone and rare coal fragments. Soft-Firm grey slightly sandy gravelly CLAY. Gravel of angular-subangular mudstone. Weak light grey MUDSTONE. Complete at 4.00m			
Remarks	1			.1	<u> </u>		Scale (approx)	Lo Bj	ogged y
						-	1:40 Figure M		l Kelly
							SH105		/S105

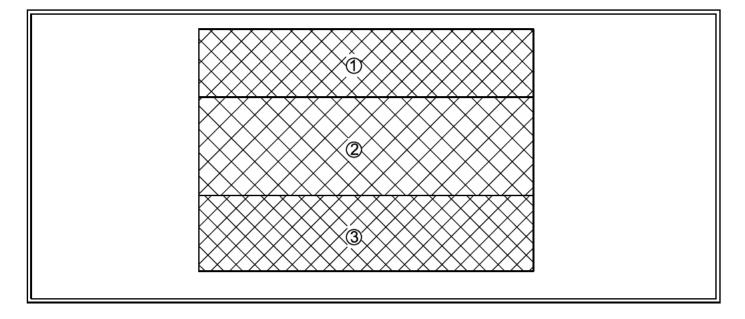
	wardell armstrong					Site North Bierley WWTW	Numb WS1	
Excavation I Drive-in Wine	Method dow Sampler	Dimensio	ns	Ground	Level (mOD)	Client KeyLand Developments	Job Numb SH105	
		Location See	Drawing SH10534-002	Dates 16	6/05/2011	Engineer M Kelly	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.50	D				(1.40)	MADE GROUND: Loose brown slightly clayey sandy gravel of sandstone, sandstone aggregate, mudstone and rare brick.		MAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
					1.40 (0.10) 1.50 (0.80)	MADE GROUND: Loose dark grey black slightly clayey slightly sandy gravel of shale.		222022222222222222222222222222222222222
					(1.30)	Firm orange brown mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone, mudstone and coal fragments. Very stiff grey slightly sandy gravelly CLAY. Gravel of angular-subangular mudstone.		
					- (0.40) - 4.00	Complete at 4.00m		-
Remarks						Scale (approx)	Logge By	
						1:40 Figure I SH105	M Kel No. 34.WS10	-

	wardell armstrong					Site North Bierley WWTW			^{umber} /S107
Excavation Drive-in Win	Method Idow Sampler	Dimensi	ons	Ground	Level (mOD)	Client KeyLand Developments		N	ob umber H10534
		Location See	Drawing SH10534-002	Dates 17	7/05/2011	Engineer M Kelly		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (M)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50	D				(0.15) 0.15 (1.85) (1.85) (1.70) (1.70) (1.10) (0.20) 5.00	Loose brown slightly clayey slightly gravelly SAND (TOPSOIL). Gravel of sandstone, sandstone aggregate, mudstone and rare brick. MADE GROUND: Firm brown slightly sandy gravely CLAY. Gravel of shale, sandstone, mudstone and rare brick. MADE GROUND: Loose black slightly clayey slightly sandy gravel of shale. Soft-Firm orange brown mottled grey slightly sandy slightly gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone. Medium Dense orange brown sandy GRAVEL of angular-subrounded fine grained sandstone. Complete at 5.00m			
Remarks							Scale (approx)	B	ogged y
						-	1:40 Figure I		I Kelly
							SH105		/S107

	wardell armstrong					Site North Bierley WWTW	Numb WS1	
Excavation Drive-in Win	Method dow Sampler	Dimensio	ns	Ground	Level (mOD)	Client KeyLand Developments	Job Numb SH105	
		Location See [Drawing SH10534-002	Dates 17	7/05/2011	Engineer M Kelly	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.40	D					MADE GROUND: Loose black slightly clayey gravelly sand. Gravel of sandstone aggregate, brick, tarmac and concrete. MADE GROUND: Firm orange brown slightly sandy gravelly CLAY. Gravel of shale, sandstone, mudstone and rare brick.		
Remarks	<u> </u>				<u> </u>	Scale (approx)	Logge By	ad
						1:40	M Kel	ly
						Figure SH105	No. 534.WS10	38

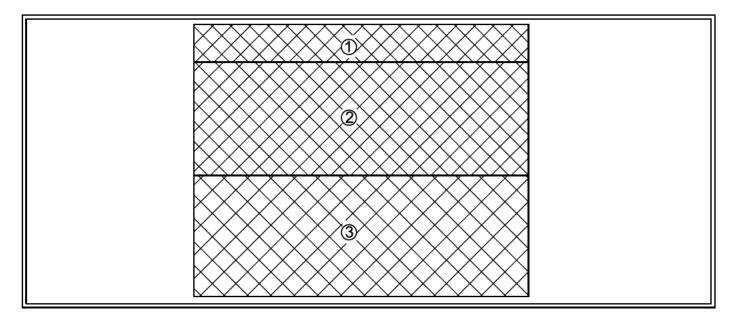
*	wardell armstrong					Site North Bierley WWTW	Numb WS1	
Excavation Drive-in Win	Method dow Sampler	Dimensio	ns	Ground	Level (mOD)	Client KeyLand Developments	Job Number SH10534 Sheet 1/1	
		Location See	Drawing SH10534-002	Dates 17	7/05/2011	Engineer M Kelly		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.70	D					MADE GROUND: Medium Dense orange brown slightly clayey sandy gravel of sandstone aggregate, sandstone and tarmac. MADE GROUND: Soft brown sandy gravelly CLAY. Gravel of coal, mudstone, sandstone and very rare brick. MADE GROUND: Dense orange slightly clayey sandy cobbly gravel of sandstone. Complete at 2.00m		
Remarks					<u> </u>	Scal (appro	e Logge x) By	ed
						1:40	M Kel	
							e No. 0534.WS10)9

wardell armstrong					Site North Bierley WWTW		Num WS		
Excavation Method Drive-in Window Sampler	Dimensio	ns	Ground Level (mOD) Client KeyLand Developments				Job Num SH10		
	Location See	Drawing SH10534-002	Dates 17	7/05/2011	Engineer M Kelly		Sheet 1/1		
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	nstr	
0.60 D					Soft black slightly sandy CLAY (TOPSOIL). Soft-Firm brown slightly sandy slightly gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone. Firm orange mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone. Complete at 4.50m				
Remarks	· · ·					Scale (approx)	Logg By	ged	
						1:40 Figure N	M Ke	elly	

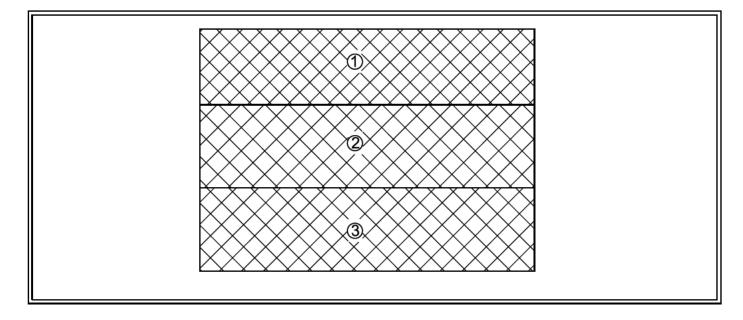


APPENDIX V

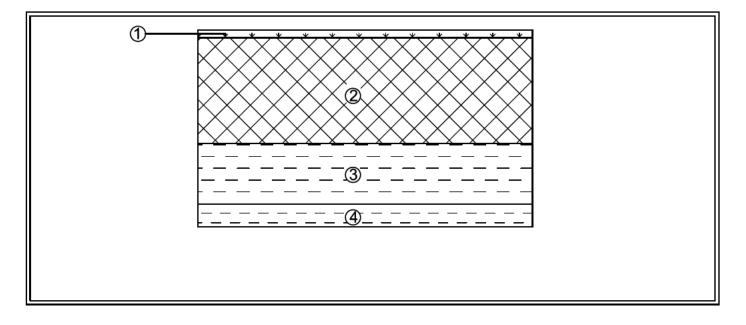
Trial Pit Logs


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Cool, windy w	Trial Pit: TP101			
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly		17/05/2011		

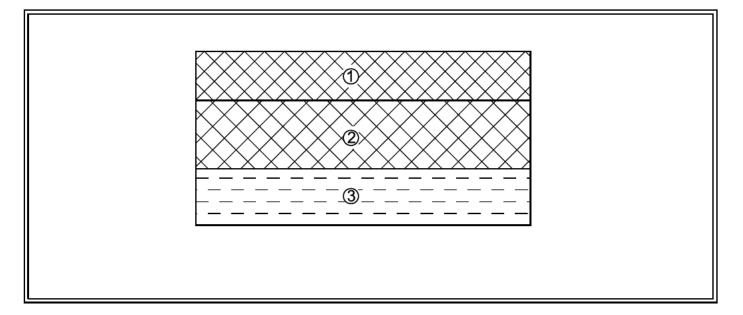
		:	STRATA	SAMPLES		TESTS	
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical	
0.00-0.90	0.90	1	MADE GROUND: Loose brown slightly clayey gravelly sand. Gravel of brick, mudstone, sandstone and concrete.	0.6	D	Soil MAXI SVOC, Soluble Sulphate (2:1),	
0.90-2.20	1.30	2	MADE GROUND: Soft brownish grey sandy gravelly clay. Gravel of brick, mudstone, shale, sandstone and concrete.			TOC.	
2.20-3.20	1.00	3	MADE GROUND: Loose black slightly clayey slightly sandy gravel of angular-subangular shale.				


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Cool, windy w	Weather: Cool, windy with showers.			
Grld Ref:	Remarks:	TP102		
Logged By: M Kelly		17/05/2011		

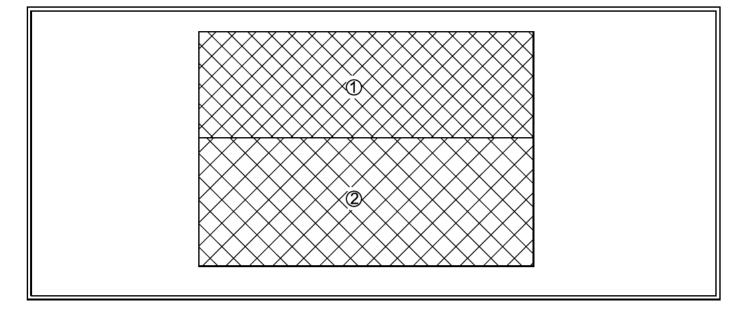
		:	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.50	0.50	1	MADE GROUND: Loose brown slightly clayey gravelly sand. Gravel of brick, mudstone, sandstone and concrete.			
0.50-2.00	1.50	2	MADE GROUND: Soft brownish grey sandy gravelly clay. Gravel of mudstone, shale, sandstone and rare brick.	0.8 1.2	D B	Soil MIDI. Moisture Content,
2.00-3.60	1.60	3	MADE GROUND: Loose black slightly clayey slightly sandy gravel of angular-subangular shale.			Atterberg Limits, PSD.


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Cool, windy w	Weather: Cool, windy with showers.			
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly		17/05/2011		

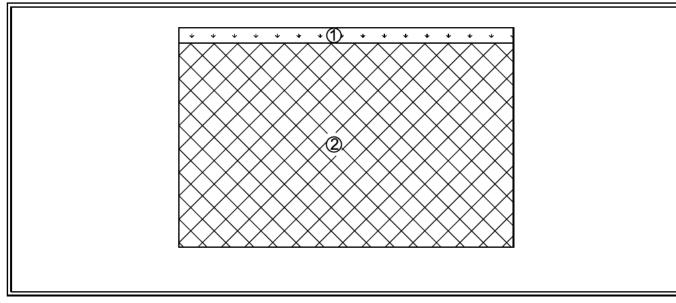
		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-1.00	1.00	1	MADE GROUND: Loose brown sandy gravel of brick, sandstone aggregate, mudstone, sandstone and concrete.	0.4	D	Soil MAXI SVOC, Soluble Sulphate (2:1),
1.00-2.10	1.10	2	MADE GROUND: Soft dark brown-black sandy gravelly clay. Gravel of mudstone, shale, sandstone and rare brick.	1.2	D	TOC.
2.10-3.20	1.10	3	MADE GROUND: Loose black slightly sandy clayey gravel of angular-subangular shale.			


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Cool, windy w	Weather: Cool, windy with showers.			
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly		17/05/2011		

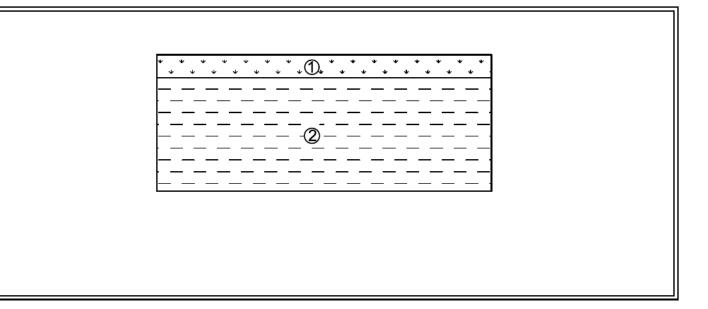
		1	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.10	0.10	1	Loose dark brown slightly clayey slightly gravelly SAND (TOPSOIL). Gravel of sandstone aggregate, shale, mudstone and rare brick.	0.5	D	Soil MAXI SVOC, UKCWG, VOC, Asbestos.
0.10-1.50	1.40	2	MADE GROUND: Loose black slightly sandy cobbly gravel of angular-subangular shale.	1.0	В	2.5kg Compaction.
1.50-2.30	0.80	3	Soft-Firm orange brown sandy gravelly CLAY. Gravel of angular-subrounded sandstone, mudstone and coal fragments.			
2.30-2.60	0.30	4	Stiff brown mottled grey slightly sandy gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone.			


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Light rain, bre	ezy.	Trial Pit: TP105		
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly		18/05/2011		

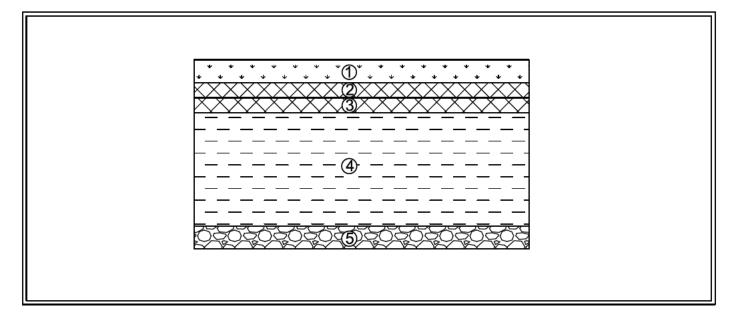
		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.65	0.65	1	MADE GROUND: Loose brown sandy cobbly gravel of brick, concrete, clinker, sandstone aggregate, sandstone, tarmac and rare ash; cobbles of brick, sandstone, tarmac and concrete.	0.3	D	Soil MAXI SVOC, UKCWG, VOC.
0.10-1.50	1.40	2	MADE GROUND: Loose black slightly sandy cobbly gravel of angular-subangular shale.	0.9	D	Soil MIDI.
1.55-2.30	0.75	3	Soft grey slightly gravelly CLAY. Gravel of angular-subrounded sandstone and mudstone.			


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534
Weather: Light rain, bre	ezy.	Trial Pit: TP106
Grld Ref:	Remarks:	Date:
Logged By: M Kelly		18/05/2011

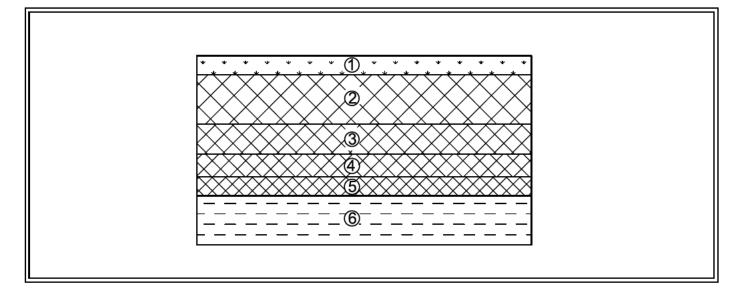
	STRATA				PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-1.40	1.40	1	MADE GROUND: Loose brown gravelly cobbly sand. Gravel of cobbles of brick, concrete, mudstone and sandstone.	0.5	D	Soil MAXI SVOC, Asbestos, Soluble Sulphate (2:1), TOC.
1.40-3.10	1.70	2	MADE GROUND: Soft grey sandy cobbly gravelly clay. Gravel and cobbles of mudstone, sandstone and rare brick.			


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No:	SH10534	
Weather: Light rain, bre	ezy.	Trial Pit:		
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly			18/05/2011	

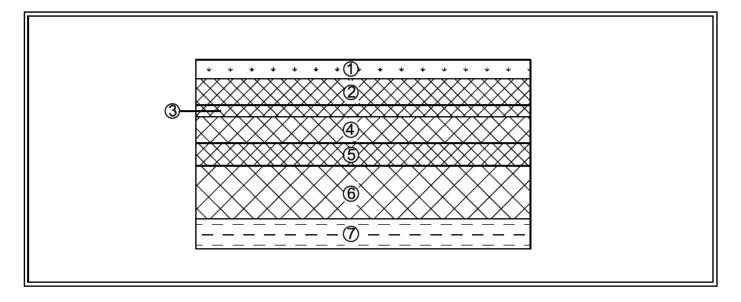
		1	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.20	0.20	1	Loose dark brown clayey SAND (TOPSOIL).			
0.20-2.90	2.70	2	MADE GROUND: Soft brownish grey slightly cobbly sandy gravelly clay. Gravel and cobbles of brick, mudstone, sandstone, shale, concrete and tarmac.	0.7	D	Soil MAXI SVOC, UKCWG, VOC, Asbestos,


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534
Weather: Light rain, bre	ezy.	Trial Pit: TP108
Grld Ref:	Remarks:	Date:
Logged By: M Kelly		18/05/2011

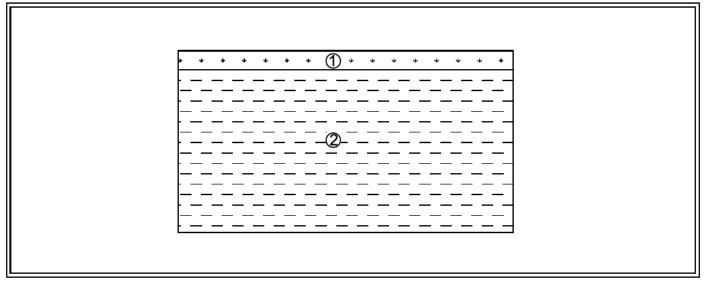
	STRATA				PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.30	0.30	1	Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone.			
0.30-1.80	1.50	2	Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of angular-subrounded sandstone.	0.75 0.9	D	Soil MAXI SVOC. Moisture Content, Atterberg Limits, PSD.


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No:	SH10534	
Weather: Light rain, bre	ezy.	Trial Pit: TP109		
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly			18/05/2011	

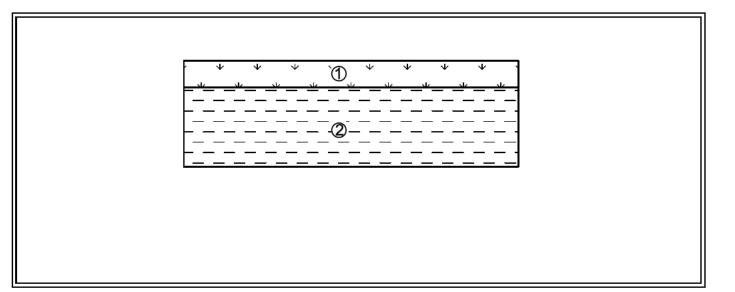
STRATA				PLES	TESTS
Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.30	1	Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone.			
0.20	2	MADE GROUND: Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of sandstone, mudstone and rare brick.	0.6	D	Soil MIDI, Soluble Sulphate (2:1), TOC.
0.20	3	MADE GROUND: Soft black sandy gravelly clay. Gravel of sandstone, mudstone and rare brick.			
1.50	4	Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of angular-subrounded sandstone.			
0.30	5	Dense orange slightly clayey sandy GRAVEL of angular-subrounded sandstone.			
	(m) 0.30 0.20 0.20 1.50	Thickness (m) No. 0.30 1 0.20 2 0.20 3 1.50 4	Thickness (m)No.Description0.301Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone.0.202MADE GROUND: Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of sandstone, mudstone and rare brick.0.203MADE GROUND: Soft black sandy gravelly clay. Gravel of sandstone, mudstone and rare brick.1.504Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of angular-subrounded sandstone.0.305Dense orange slightly clayey sandy GRAVEL of angular-subrounded	Thickness (m)No.DescriptionDepth (m)0.301Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone.0.202MADE GROUND: Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of sandstone, mudstone and rare brick.0.60.203MADE GROUND: Soft black sandy gravelly clay. Gravel of sandstone, mudstone and rare brick.0.61.504Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of angular-subrounded sandstone.0.300.305Dense orange slightly clayey sandy GRAVEL of angular-subrounded	Thickness (m)No.DescriptionDepth (m)Type0.301Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Light rain, bre	ezy.	Trial Pit: TP110		
Grld Ref:	Remarks:	Date:	\neg	
Logged By: M Kelly		18/05/2011		

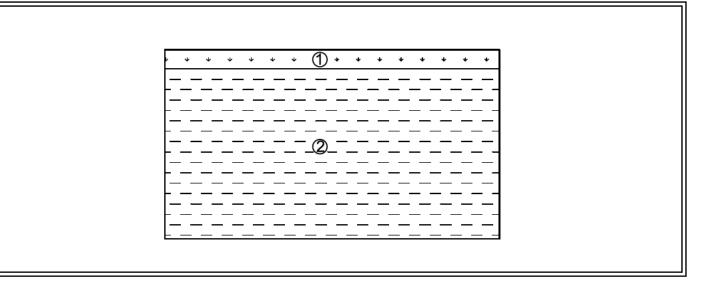
		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.25	0.25	1	Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone.			
0.25-0.90	0.65	2	MADE GROUND: Firm orange mottled grey slightly cobbly sandy gravelly CLAY. Gravel and cobbles of sandstone, mudstone and rare brick.			
0.90-1.30	0.40	3	MADE GROUND: Soft black sandy gravelly clay. Gravel of sandstone, mudstone and rare brick.	1.0	D	Soil MAXI SVOC, UKCWG, VOC,
1.30-1.60	0.30	4	MADE GROUND: Loose black slightly clayey slightly sandy gravel of angular-subangular shale.	1.4	D	Asbestos.
1.60-1.85	0.25	5	MADE GROUND: Loose black gravelly sand, Gravel of ash, shale, coal fragments and brick.			
1.85-2.50	0.65	6	Firm orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.			


Excavator: JCB 3CX Project: North Bierley WWTW		Job No:	SH10534
Weather: Light rain, bre	Weather: Light rain, breezy.		
Grld Ref: Remarks:			TP111
Logged By: M Kelly		Date:	18/05/2011

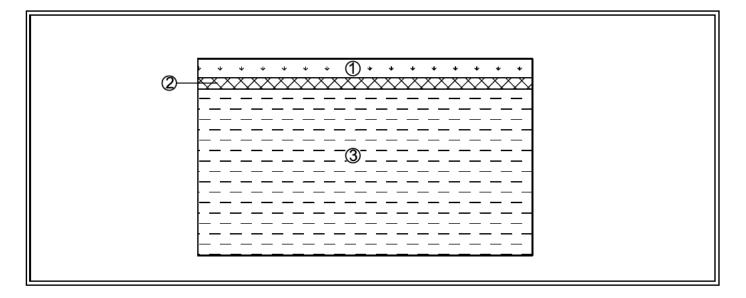
	STRATA					TESTS
Depth (m)	Thlckness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.25	0.25	1	Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and mudstone.			
0.25-0.60	0.35	2	MADE GROUND: Loose brown sandy gravel sandstone, mudstone and rare brick.			
0.60-0.75	0.15	3	MADE GROUND: Loose black sandy gravel of ash, shale, mudstone and rare brick.	0.7	D	Soil MAXI SVOC, UKCWG, VOC,
0.75-1.10	0.35	4	MADE GROUND: Soft black sandy gravelly clay. Gravel of sandstone, mudstone and rare brick.			Asbestos, Soluble Sulphate (2:1), TOC.
1.10-1.40	0.30	5	MADE GROUND: Loose black sandy gravel of ash, shale, mudstone, sandstone and brick.	1.2	D	Soil MAXI SVOC, UKCWG, VOC.
1.40-2.10	0.70	6	MADE GROUND: Soft grey sandy gravelly clay. Gravel of mudstone, shale and brick.			
2.10-2.50	0.40	7	Firm orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.	2.2	В	2.5kg Compaction.


Excavator: Project: JCB 3CX North Bierley WWTW		Job No:	SH10534
Weather: Light rain, bre	Weather: Light rain, breezy.		
Grld Ref:	Grld Ref: Remarks:		TP112
Logged By: M Kelly		Date:	18/05/2011

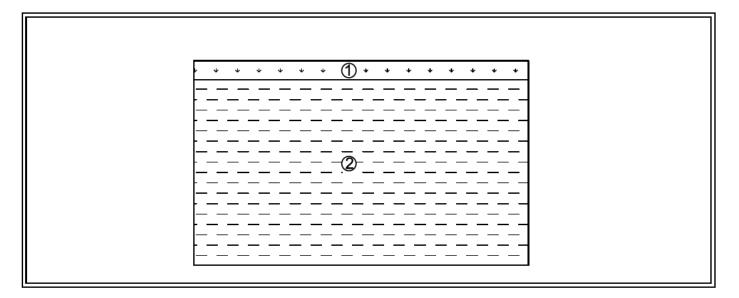
	STRATA				TESTS
	kness No. n)	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.25 0.2	25 1	Loose dark brown slightly clayey SAND (TOPSOIL).			
0.25-2.40 2.1	15 2	Firm orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.	0.5	D	Soil MIDI.


Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534		
Weather: Mild, sunny, b	Trial Pit: TP113			
Grld Ref:	Remarks:	Date:		
Logged By: M Kelly		19/05/2011		

		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.35	0.35	1	Loose dark brown slightly clayey slightly gravelly SAND (TOPSOIL). Gravel of sandstone.			
0.35-1.40	1.05	2	Firm orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.	0.45	D	Soil MAXI SVOC, Soluble Sulphate (2:1), TOC.

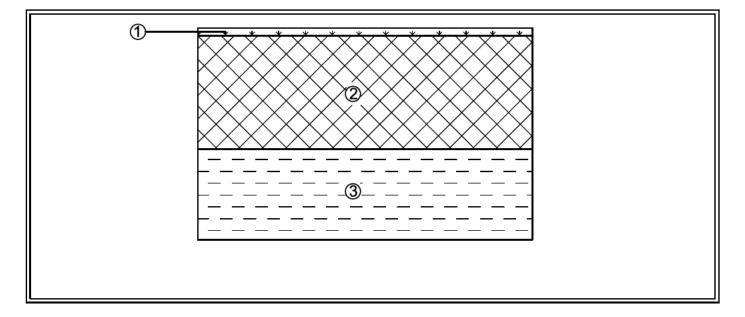

Excavator: JCB 3CX Project: North Bierley WWTW		Job No: SH10534	
Weather: Mild, sunny, b	Weather: Mild, sunny, breezy.		
Grld Ref:	Grld Ref: Remarks:		
Logged By: M Kelly		Date: 19/05/2011	

	STRATA					TESTS
Depth (m)	Thlckness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.25	0.25	1	Loose dark brown slightly clayey slightly gravelly SAND (TOPSOIL). Gravel of sandstone.			
0.25-2.50	2.25	2	Firm-Stiff orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone. Increasing gravel, cobbles and boulders with depth.	0.8	D	Soil MIDI, Soluble Sulphate (2:1), TOC. Moisture Content, Atterberg Limits, PSD.


Excavator: JCB 3CX Project: North Bierley WWTW		Job No:	SH10534
Weather: Mild, sunny, breezy.			TP115
Grld Ref: Remarks:			
Logged By: M Kelly		Date:	19/05/2011

		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.25	0.25	1	Loose black slightly clayey gravelly SAND (TOPSOIL). Gravel of angular-subrounded sandstone and shale.			
0.25-0.40	0.15	2	MADE GROUND: Loose black sandy gravel of brick, sandstone aggregate, shale, mudstone, sandstone and rare brick.	0.3	D	Soil MAXI SVOC, UKCWG, VOC,
0.40-2.60	2.20	3	Firm-Stiff orange brown mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.			Asbestos.

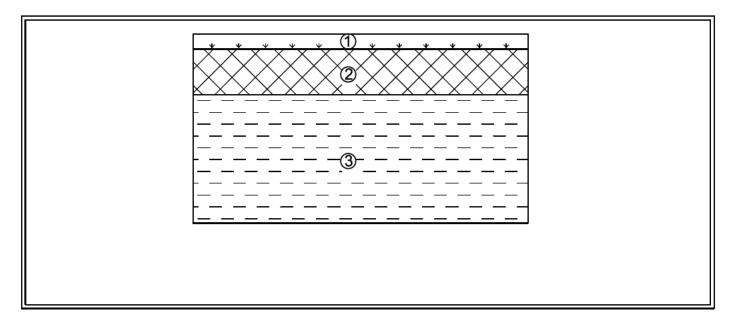
Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534	
Weather: Mild, sunny, b	Weather: Mild, sunny, breezy.		
Grld Ref: Remarks:		Date:	
Logged By: M Kelly		19/05/2011	



STRATA				SAMPLES		TESTS
Depth (m)	Thlckness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.25	0.25	1	Loose dark brown slightly clayey slightly gravelly SAND (TOPSOIL). Gravel of sandstone.			
0.25-2.70	2.45	2	Firm orange brown mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.	0.6	D	

TRIAL PIT RECORD

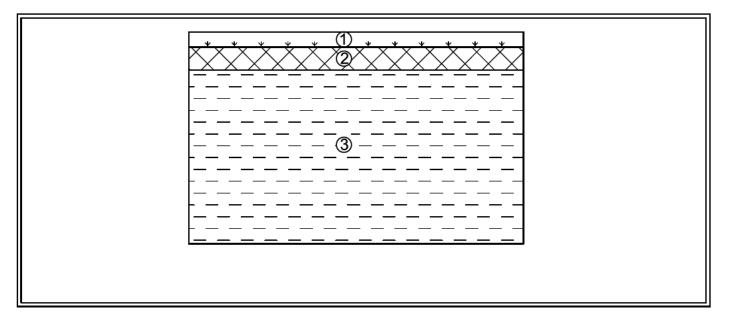
Excavator: JCB 3CX	Project: North Bierley WWTW	Job No: SH10534
Weather: Mild, sunny, b	preezy.	Trial Pit: TP117
Grld Ref:	Remarks:	Date:
Logged By: M Kelly		20/05/2011



		:	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.10	0.10	1	Loose dark brown clayey SAND (TOPSOIL).			
0.10-1.60	1.50	2	MADE GROUND: Loose dark grey slightly cobbly sandy gravel of shale and brick.	0.4	D	Soil MIDI.
1.60-2.80	1.20	3	Soft-Firm orange brown mottled grey slightly cobbly slightly gravelly sandy CLAY. Gravel and cobbles of angular-subrounded sandstone.			

TRIAL PIT RECORD

Excavator: JCB 3CX	Project: North Bierley WWTW	Job No:	SH10534
Weather: Mild, sunny, b	reezy.	Trial Pit:	TP118
Grld Ref:	Remarks:	Date:	
Logged By: M Kelly			20/05/2011



		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.20	0.20	1	Loose dark brown clayey SAND (TOPSOIL).			
0.20-0.80	0.60	2	MADE GROUND: Loose brown slightly clayey gravelly sand. Gravel of sandstone, shale and rare brick.	0.7	D	Soil MAXI SVOC, Asbestos.
0.80-2.50	1.70	3	Firm orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.	1.4	В	2.5kg Compaction.

TRIAL PIT RECORD

Excavator: JCB 3CX	Project: North Bierley WWTW	Job No:	SH10534
Weather: Mild, sunny, b	reezy.	Trial Pit:	TP119
Grid Ref:	Remarks:	Date:	-
Logged By: M Kelly			20/05/2011

		;	STRATA	SAM	PLES	TESTS
Depth (m)	Thickness (m)	No.	Description	Depth (m)	Туре	Chemical / Geotechnical
0.00-0.20	0.20	1	Loose dark brown clayey SAND (TOPSOIL).			
0.20-0.50	0.30	2	MADE GROUND: Loose brown slightly clayey gravelly sand. Gravel of sandstone, shale and rare brick.	0.3	D	Soil MIDI.
0.50-2.80	2.30	3	Firm orange mottled grey slightly cobbly sandy gravelly CLAY with rare boulders. Gravel, cobbles and boulders of angular-subrounded sandstone.			

APPENDIX VI

Geochemical Laboratory Results

Wardell Armstrong LLP Unit 4 Newton Business Centre Thorncliffe Park Sheffield South Yorkshire S35 2PH

Attention: James Lymer

CERTIFICATE OF ANALYSIS

Date:	23 June 2011
Customer:	H_WARDELL_SHF
Sample Delivery Group (SDG):	110523-40
Your Reference:	SH10534
Location:	
Report No:	135537

This report has been revised and directly supersedes 132894 in its entirety.

We received 34 samples on Saturday May 21, 2011 and 30 of these samples were scheduled for analysis which was completed on Thursday June 23, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

CERTIFICATE OF ANALYSIS

Validated

SDG:	110523-40	Location:		Order Number:	SH3068
Job:	H_WARDELL_SHF-37	Customer: Wa	ardell Armstrong LLP	Report Number:	135537
Client Reference:	SH10534	Attention: Mi	ke Kelly	Superseded Report:	132894

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
3515843	TP 101		0.60	17/05/2011
3515844	TP 102		0.80	17/05/2011
3515847	TP 103		0.40	17/05/2011
3515848	TP 103		1.20	17/05/2011
3515852	TP 104		0.50	17/05/2011
3515853	TP 105		0.30	18/05/2011
3515854	TP 105		0.90	18/05/2011
3515856	TP 106		0.50	18/05/2011
3515860	TP 107		0.70	18/05/2011
3515861	TP 108		0.75	18/05/2011
3515862	TP 109		0.60	18/05/2011
3515863	TP 110		1.00	18/05/2011
3515864	TP 110		1.40	18/05/2011
3515866	TP 111		0.70	18/05/2011
3515870	TP 112		0.50	18/05/2011
3515872	TP 113		0.45	19/05/2011
3515876	TP 114		0.80	19/05/2011
3515881	TP 116		0.60	19/05/2011
3515882	TP 117		0.40	20/05/2011
3515883	TP 118		0.70	20/05/2011
3515886	TP 119		0.30	20/05/2011
3515887	WS 101		0.40	16/05/2011
3515888	WS 102		0.70	16/05/2011
3515891	WS 103		0.30	16/05/2011
3515892	WS 103		0.60	16/05/2011
3515894	WS 104		0.40	16/05/2011
3515895	WS 105		0.30	16/05/2011
3515897	WS 106		0.50	16/05/2011
3515899	WS 107		0.50	17/05/2011
3515902	WS 109		0.70	17/05/2011
3515903	WS 110		0.60	17/05/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

Test Image: Containing deference Image: Containing def	Job:	110523-40 H_WARDEL SH10534	L_SHF-37	Location: Custome Attention	r: '	Waro Mike			tron	g LLF	5					Rep	er Nu ort Ni ersed	umb	er:	ort:	1	3553 3289	37		
Possible Customer Sample Reference I <	Results Legend		Lab Sample	No(s)	3515843	3515844	100100	3545847	3515852		3515853	3515854	3515856	3515860	3515861	3515862		3515863	3515866		3515869	3515870	3515872	3515876	3515878
Depth (m) No		ion			TP 101	TP 102		TD 103	TP 104	:	TP 105	TP 105	TP 106	TP 107	TP 108	TP 109		TP 110	TP 111	1	TP 111	TP 112	TP 113	TP 114	TP 115
Depth (m) N			AGS Refer	ence																					
Arrings by Kone (soil) All Tests 21 Arring Server All NPP: 0		ions by Kone (soil)	Depth (r					5	50	2	3 3		50	70	75				70			50	45	8	
Aritors by Kone (soil) All Tests 20 A V <			Contain	er	400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL	250g Amber Jar (AL 200g Tub (AL E214)	60g VOC (ALE215)	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 60g VOC (ALE215)	250g Amber Jar (AL 400g Tub (ALE214)	250g Amber Jar (AL 400g Tub (ALE214)	60g VOC (ALE215) 400g Tub (ALE214)	400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 60g VOC (ALE215)	60g VOC (ALE215) 400g Tub (ALE214)	250g Amber Jar (AL	60g VOC (ALE215) 400g Tub (ALE214)	400g Tub (ALE214) 250g Amber Jar (AL			
Addeestors Containing Material All NDPs:0 Image: Stress 10 Image: S	Anions by Kone (soil)	/	Aji	NDPs: 0																					
Screen Tests: 13 I <	Anions by Kone (w)	/	All																	2	<mark>x</mark>				x
Test: 1 Test: 1 X <		al /	All)	K 2	x	x			x	x			x		x						x
Tests: 12 X	Asbestos Identification	/	All)	ĸ																	
Tests: 6 X<		/	All			x					x					x						x		x	
Cómp/Free/Total/Thiocyanate Tests: 30 X	Ŭ			Tests: 6	×			2	x											2	<mark>x</mark>				×
Tests: 6 X<	Comp/Free/Total/Thiocyana	ite		Tests: 30	×	x		K 2	x	x		×	x	x	×	x	x		x	2	×	×	x	x	x
Tests: 12 X				Tests: 6	x			3	x											2	x				x
(W) Tests: 3 EPH CWG (Aliphatic) GC (S) All NDPs: 0 Tests: 10 X X X X X X X X X X X X X X X X X X X X X X X X X X X <td></td> <td></td> <td></td> <td>Tests: 12</td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td>x</td> <td></td>				Tests: 12		x						×				x						×		x	
Tests: 10 X </td <td>(W)</td> <td></td> <td></td> <td>Tests: 3</td> <td></td> <td>2</td> <td>×</td> <td></td> <td></td> <td></td> <td>x</td>	(W)			Tests: 3																2	×				x
EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 10 X X X X X X GRO by GC-FID (S) All NDPs: 0 Tests: 10 NDPs: 0 Tests: 10 Image: Comparison of the test of the test of te				Tests: 10				×		×			×				×	x		x					x
X X X X X X X X X GRO by GC-FID (S) All NDPs: 0 Tests: 10 Image: Comparison of the second seco	(W)		All	Tests: 3 NDPs: 0																	x				x
	GRO by GC-FID (S)	/	All	Tests: 10 NDPs: 0				x		×			X				×	X		x					x
GRO by GC-FID (W) All NDPs: 0 Image: Comparison of the second	GRO by GC-FID (W)	/	All						x		×			x				x	×		x				

Job: H	10523-40 H_WARDELL_SHF-37 SH10534	Location: Customer Attention	r:	Ward Mike			ong LLF)				Repo	r Num ort Nur ersede		1	SH30 13553 13289	37		
SOLID Results Legend X Test	Lab San	nple No(s)	3515843	3515844	3010047		3515852	3515853	3515856	3515860	3515861	3515862	3515863	3515866	3515869	3515870	3515872	3515876	3515878
suits Legend X Test No Determination Possible kavalent Chromium (s) kavalent Chromium (w) rcury Dissolved tals by iCap-OES (Soil)	Cus	tomer Reference	TP 101	TP 102	UL AI		TP 104	TP 105	TP 106	TP 107	TP 108	TP 109	TP 110	TP 111	TP 111	TP 112	TP 113	TP 114	TP 115
	AGS R	eference																	
lercury Dissolved	Dep	th (m)	0.60		0.40			0.30				60	1.00		1.20				
	Con	tainer	400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (Al	400g Tub (ALE214 250g Amber Jar (A 60g VOC (ALE215	400g Tub (ALE214 250g Amber Jar (A 60g VOC (ALE215	400g Tub (ALE214 250g Amber Jar (A	60g VOC (ALE215 400g Tub (ALE214 250g Amber Jar (A	400g Tub (ALE214 250g Amber Jar (A	400g Tub (ALE214 250g Amber Jar (A	60g VOC (ALE215 400g Tub (ALE214 250g Amber Jar (A	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215 400g Tub (ALE214 250g Amber Jar (A	400g Tub (ALE214 250g Amber Jar (A			
	All	NDPs: 0 Tests: 30	×				x	×			r S		x	x	x	x			
	All	NDPs: 0 Tests: 3													x				×
Mercury Dissolved	All	NDPs: 0 Tests: 6	x			x									x				x
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 30	x	x	x	x	x	×	x	×	x	x	x	x	x	×	x	x	x
lexavalent Chromium (w) A fercury Dissolved A fetals by iCap-OES (Soil) A fetals by iCap-OES (Soil) G G G G G G G G G G G G G G G G G G G	Cadmium	NDPs: 0 Tests: 30	x	x	x	x	x	×	x	×	x	x	x	x	x	x	x	x	x
	Chromium	NDPs: 0 Tests: 30	x	x	x	x	x	×	x	×	x	x	x	x	x	x	x	x	x
	Copper	NDPs: 0 Tests: 30	x	x	x	x	x	×	x	×	x	x	x	x	x	x	x	x	x
	Lead	NDPs: 0 Tests: 30	x	x	x	x	x	×	x	×	x	x	x	x	x	x	x	x	x
	Mercury	NDPs: 0 Tests: 30	x	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x
	Nickel	NDPs: 0 Tests: 30	x	x	x	x	×	×	x	×	x	x	x	x	x	×	x	x	x
	Selenium	NDPs: 0 Tests: 30	x	x	x	x	×	×	x	×	x	x	x	x	x	×	x	x	x
	Thallium	NDPs: 0 Tests: 1									x								
	Vanadium	NDPs: 0 Tests: 18	x		x	x	x		x	x	×		x	x	x		x		x
BAUL CONF	Zinc	NDPs: 0 Tests: 30	x	x	x	x	x	x	x	x	x	x	x	×	x	x	x	x	x
PAH by GCMS	All	NDPs: 0 Tests: 12		x				x				x				x		x	

Job: H	0523-40 _WARDEL 110534	L_SHF-37	Location: Customer Attention	r: '	Waro Mike	dell		istroi	ng L	LP						Rep	ort	umi Num edec	nbe	r:	rt:	1	SH30 1355 1328	37			
SOLID Results Legend		Lab Sample	No(s)	3515843	3515844	0010011	3515847	3515852		3515853	3515854	OCDCICS	2000	3515860	3515861	3515862		3515863		3515866		3515869	3515870	3010872		0010070	3515878
No Determination Possible		Custom Sample Refe		TP 101	TP 102	-	TP 103	TP 104		TP 105	TP 105	UL LI	;	TP 107	TP 108	TP 109		TP 110		TP 111		TP 111	TP 112	1 113			TD 115
		AGS Refer	ence																								
IH Spec MS - Aqueous (W)		Depth (r	•	0.60			0.40	0.50	3	0.30	0.90	2	5	0.70	0.75	0.60		1.00		0.70		1.20		5			
PAH Spec MS - Aqueous (W) H		Contain	er	400g Tub (ALE214 250g Amber Jar (A	400g Tub (ALE214 250g Amber Jar (A	250g Amber Jar (A	250g Amber Jar (A 400g Tub (ALE214	60g VOC (ALE215 400g Tub (ALE214	400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215	400g Tub (ALE214 250g Amber Jar (A	400g Tub (ALE21- 250g Amber Jar (A	250g Amber Jar (A	60g VOC (ALE215	400g Tub (ALE214	400g Tub (ALE214 250a Amber Jar (A	250g Amber Jar (A	60g VOC (ALE215	250g Amber Jar (A	60g VOC (ALE215	250g Amber Jar (A	60g VOC (ALE215	400g Tub (ALE214 250g Amber Jar (A	250g Amber Jar (A	250g Amber Jar (A	250g Amber Jar (A	A00~ Tub (A1 E214
		All	NDPs: 0 Tests: 6	r ≎ x			5 -	ss x							- 5						r :: X		- 3				×
pH	4	All	NDPs: 0 Tests: 30	x	x		X	x		<pre>c</pre>	X)	()	(x	×		×	2	×	X		x		()	()	x
pH Value	4	All	NDPs: 0 Tests: 3																		X						x
Phenols by HPLC (S)	<i>,</i>	AII	NDPs: 0 Tests: 30	x	x		x	x		c	x)	()	(x	×		×	2	×	X		x		()	()	x
Phenols by HPLC (W)	F	All	NDPs: 0 Tests: 3																		X	.					x
Sample description	, F	All	NDPs: 0 Tests: 30	X	x	x	x		x		x	x	x		x	x	x		x		X		x	x	x	X	-
Semi Volatile Organic Compou	inds /	All .	NDPs: 0 Tests: 18	x		x	x		x			x	x		x		x		x		x			x		x	-
Sulphide	F	All .	NDPs: 0 Tests: 3																		×	<u>د</u>					×
Total Organic Carbon	ŀ	All	NDPs: 0 Tests: 12	x		x						x				x			x					x	x		
Total Sulphate	ļ	NI .	NDPs: 0 Tests: 30	x	x	x	x		x		x	x	x		x	x	x		x		x		x	x	x	x	-
Total Sulphur	ŀ	All	NDPs: 0 Tests: 12		x						x					x							x		x		-
TPH CWG (W)	ļ	All .	NDPs: 0 Tests: 3																		×	c i		Ħ		2	x
TPH CWG GC (S)	ļ	All .	NDPs: 0 Tests: 10				x		x				x				x		x		x					x	
VOC MS (S)	ļ	All	NDPs: 0 Tests: 10					X		x				v				x		x		x					

	440505 15								NAL						-			01100000
Job:	110523-40 H_WARDE SH10534	ELL_SHF-37	Location: Customer Attention	r: \		lell Arm Kelly	nstror	ng LLP					Orde Repo Supe	ort N	lumi	ber:	ort:	SH3068 135537 132894
SOLID																		
Results Legend		Lab Sample	No(s)	3515887	3515888	3515891	3515894	3515895	3515897	3515899	3515901	3515902	35159	3515878	3515882	3515883	3515886	
X Test				387	88	391	94	395	397	999	901	02	03	378	382	383	86	
No Determinati	on																	
Possible		Custom	or		_		_	_	_	_	_	_	_					
		Sample Refe		WS 101	WS 102	WS 103	WS 104	WS 105	WS 106	WS 107	WS 108	WS 109	NS 11	TP 115	TP 117	TP 118	TP 119	
		-		Ē	Ñ	ü	4	5	ത	7	õ	Ø	0	5	7	8	9	
		AGS Refer	ence															
		Depth (r	n)	0.40	0.70	0.30	0.40	0.30	0.50	0.50	0.40	0.70	0.60	0.30	0.40	0.70	0.30	
				400g 250g	400g 250g	60g \ 400g 250g	400g 250g	60g \ 400g 250g	400g 250g	400g 250g	60g \ 400g 250g	400g 250g	400g 250g	250g 60g \	400g	400g	400g	
		Contain	er	Tub (/ Ambe	Tub (/ Ambe	Ambe	Tub (/	Ambe	Tub (/ Ambe	Tub (/ Ambe	OC (/ Tub (/ Ambe	Tub (/ Ambe	Tub (/ Ambe	Ambe OC (/	Tub (/	Tub (/	Tub (/ Ambe	
				LE21	r Jar (/	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	LE21	400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL 60g VOC (ALE215)	LE21	400g Tub (ALE214)	LE21	
Anions by Kone (soil)		All	NDPs: 0	₽₽	₽₽	₽£9	₽₽	₽ ₽ 5	₽₽	₽₽	₽₽5	₽₽	₽₽	ຫ ₽	4 €	2 €	₽.₽	
2			Tests: 23	x		x	x	x		x	X	x	x			ĸ		
Anions by Kone (w)		All	NDPs: 0															
			Tests: 3								x							
Asbestos Containing Materia	al	All	NDPs: 0												+		+	
Screen			Tests: 13			x		x			x		X			x		
Boron Water Soluble		All	NDPs: 0															
			Tests: 12	x	x		x		x			x		x			x	
CEN Readings		All	NDPs: 0 Tests: 6															
			10313.0								x					x		
Cyanide Comp/Free/Total/Thiocyana	te	All	NDPs: 0 Tests: 30															
				X	X	X	X	x	X	X	x	X	X		x	x	×	
Dissolved Metals by ICP-MS	5	All	NDPs: 0 Tests: 6															
Easily Liberated Sulphide		All	NDPs: 0								X					x		
цаэлу цистакей эйірпійе		rui	NDPs: 0 Tests: 12						-			-			~			
EPH CWG (Aliphatic) Aqueo	ous GC	All	NDPs: 0	X	X		X		X			X			x		X	
W)			Tests: 3								X							
EPH CWG (Aliphatic) GC (S	5)	All	NDPs: 0	$\left \right $													+	
			Tests: 10			x		x			x						+	
EPH CWG (Aromatic) Aque	ous GC	All	NDPs: 0	$\left \right $					\square			$\left \right $		\vdash	\square		+	
W)			Tests: 3								x							
EPH CWG (Aromatic) GC (§	5)	All	NDPs: 0												+		+	
			Tests: 10			x		x			x							
GRO by GC-FID (S)		All	NDPs: 0 Tests: 10												\square		+	
			Tests: 10			×		x			x			x				
GRO by GC-FID (W)		All	NDPs: 0 Tests: 3															
											x							
Hexavalent Chromium (s)		All	NDPs: 0 Tests: 30															

	140500 40												-				01100.01
Job:	110523-40 H_WARDELL_SHF-37 SH10534	Location: Customer Attention:	r: \		ell Arm Kelly	stror	ng LLF	>				Ord Rep Sup	ort	Num	ber:	oort:	SH3068 135537 132894
SOLID																	
Results Legend	Lab Sam	ple No(s)	3515887	3515888	3515891	3515894		3515895	0 1 1 0	3515901	3515902	35159	3515878	3515882	3515883	3515886	
X Test			387	388	391	394		995	07	99	02	903	378	382	383	386	
No Determinati	on																
Possible	Cust	omer	<	<	<	<		< <		< <	<	<		_	_	_	
	Sample R		WS 101	WS 102	WS 103	WS 104		WS 105		WS 108	WS 109	VS 11	TP 115	TP 117	TP 118	TP 119	
			_	N	ω	4	'	5 0	" ·	7 0	9 9	0		~		Ű	
									+-				+				
	AGS Re	ference															
															-		
	Dept	n (m)	0.40	0.70	0.30	0.40		0.30	5	0.50	0.70	0.60	0.30	0.40	0.70	0.30	
			400g 250g /	400g 250g /	60g V 400g 250g /	400g 250g /	400g 250g	400g 250g /	250g	400g 250g 400g	400g	400g 250g /	60g V	400g	400g	400g 250g /	
	Cont	ainer	Ambei	Ambei	OC (A	Ambei	Ambei		Ambei	Tub (A	Ambei	Ambei	00 (/	Tub (/	Tub (/	Tub (A Ambei	
			Jar (/	LE21	LE21: Jar (/	Jar (/	LE21	LE21:	Jar (/	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (AL 400g Tub (ALE214)	Jar (/	Jar (/	LE21	LE21	Jar (/	LE21. Jar (/	
Hexavalent Chromium (w)	All	NDPs: 0	₽₽	₽₽	₽£9	₽₽	₽₽	5 F 3	> = :	9 4 4	• ₽ €	₽₽	5 f	£ ⊻	₽₽	₽₽	
		Tests: 3								x							
Mercury Dissolved	All	NDPs: 0											+		_		
		Tests: 6								x					X		
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0															
		Tests: 30	x	x	x	x	x	x	x	x	x	x		x	x	x	
	Cadmium	NDPs: 0 Tests: 30															
		16313. 30	x	x	x	x	x	x	x	x	x	x		x	x	x	
	Chromium	NDPs: 0 Tests: 30															
			x	x	x	x	x	x	x	x	x	x		x	x	x	
	Copper	NDPs: 0 Tests: 30															
			x	x	x	x	x	×	x	x	x	x		×	x	×	
	Lead	NDPs: 0 Tests: 30		~			V			.							
	Mercury	NDDa: 0	x	x	x	x	x	x	x	x	x	x		x	x	x	
	Wereary	NDPs: 0 Tests: 30	x	x	x	x	x	x	x	x	x	x		x	x	x	
	Nickel	NDPs: 0	^	^	^	^	^	^	^	^	^	^	l l	^	^	^	
		Tests: 30	x	x	x	x	x	x	x	x	x	x		x	x	x	
	Selenium	NDPs: 0											H				
		Tests: 30	x	x	x	x	x	x	x	x	x	x		x	x	x	
	Vanadium	NDPs: 0															
		Tests: 18			x		x		x	x		x			x		
	Zinc	NDPs: 0	\vdash	\square				+									
		Tests: 30	x	x	x	x	x	x	x	x	x	x		x	x	x	
PAH by GCMS	All	NDPs: 0 Tests: 12															
		Tests. 12	x	x		x		x			x			×		x	
PAH Spec MS - Aqueous (N	/) All	NDPs: 0 Tests: 6															
										x					x		
PCBs by GCMS	All	NDPs: 0											T				

SDG: 110523 Job: H_WAR Client Reference: SH1053	RDELL_SHF-37	Location: Customer Attention:		War Mike			stro	ng Ll	P					F	Repo	ort N	umb lum ded	ber:	port:	SH3068 135537 132894	
SOLID Results Legend X Test	Lab Sample	No(s)	3515887	3010888	0	3515891	3515894		3515895	3515897	3515899		3515901	3515902	3515903	3515878	3515882	3515883	3515886		
No Determination Possible	Custom Sample Refe		WS 101	ZOL SAA		WS 103	WS 104		WS 105	WS 106	WS 107		WS 108	WS 109	WS 110	TP 115	TP 117	TP 118	TP 119		
	AGS Refer	ence																			
	Depth (r	n)	0.40	0.70	2	0.30	0.40		0.30	0.50	0.50		0.40	0.70	0.60	0.30	0.40	0.70	0.30		
	Contain	er	400g Tub (ALE214 250g Amber Jar (A	250g Amber Jar (A	250g Amber Jar (A	60g VOC (ALE215 400g Tub (ALE214	400g Tub (ALE214 250g Amber Jar (A	250g Amber Jar (A	60g VOC (ALE215	400g Tub (ALE214	400g Tub (ALE214 250g Amber Jar (A	400g Tub (ALE214 250g Amber Jar (A	60g VOC (ALE215	400g Tub (ALE214	400g Tub (ALE214	60g VOC (ALE215	400g Tub (ALE214	400g Tub (ALE214	400g Tub (ALE214) 250g Amber Jar (AL		
pH	All	NDPs: 0 Tests: 30	×			x	×			- 3 X	r ≎ x			×.	- <u>-</u> x		×.	- <u>-</u> X			
pH Value	All	NDPs: 0 Tests: 3										X									
Phenols by HPLC (S)	All	NDPs: 0 Tests: 30	x		c	x	x		<u>.</u>	X	x	X		X	X		X	X	x		
Phenols by HPLC (W)	All	NDPs: 0 Tests: 3										x									
Sample description	All	NDPs: 0 Tests: 30	x	x	x		x	x	2	x	x	x	, ,	()	x	,	()	x	x		
Semi Volatile Organic Compounds	All	NDPs: 0 Tests: 18			x			x			x	x			x			x			
Sulphide	All	NDPs: 0 Tests: 3										×									
Total Organic Carbon	All	NDPs: 0 Tests: 12	x				x				x)	()	×						
Total Sulphate	All	NDPs: 0 Tests: 30	x	x	x		x	x		x	x	x)	()	×	,	()	×	x		
Total Sulphur	All	NDPs: 0 Tests: 12	x	x			x		2	x)	C I		×	C I		x		
TPH CWG (W)	All	NDPs: 0 Tests: 3										X									
TPH CWG GC (S)	All	NDPs: 0 Tests: 10			x			x				x									
VOC MS (S)	All	NDPs: 0 Tests: 10				x			x				x			x					

Grain Sizes

CERTIFICATE OF ANALYSIS

SDG:	110523-40	Location:		Order Number:	SH3068
Job:	H_WARDELL_SHF-37	Customer:	Wardell Armstrong LLP	Report Number:	135537
Client Reference:	SH10534	Attention:	Mike Kelly	Superseded Report:	132894

Sample Descriptions

very fine	<0.063mm	fine	0.063mm - 0.1mm	medium	0.1mr	n - 2mm 🛛 🖸	oarse	2mm - 1	Omm very co	oarse >10
Lab Sample No(s	s) Custon	ner Sample R	ef. Depth (m)	C	olour	Description	(Grain size	Inclusions	Inclusions 2
3515843		TP 101	0.60	Darl	Brown	Top Soil	0.0	63 - 0.1 mm	Stones	Vegetation
3515844		TP 102	0.80	Darl	Brown	Silty Clay	0.0	63 - 0.1 mm	Stones	N/A
3515847		TP 103	0.40	Ligh	t Brown	Sandy Loam	0	.1 - 2 mm	Stones	None
3515852		TP 104	0.50	Ligh	t Brown	Clay	<	0.063 mm	None	None
3515853		TP 105	0.30	Darl	Brown	Silty Sand	0.0	63 - 0.1 mm	Crushed Brick	Vegetation
3515854		TP 105	0.90	Ligh	t Brown	Clay	<	0.063 mm	None	None
3515856		TP 106	0.50	Ligh	t Brown	Silt Loam	0.0	63 - 0.1 mm	Stones	None
3515860		TP 107	0.70	Ligh	t Brown	Silty Clay Loar	n 0.0	63 - 0.1 mm	Stones	None
3515861		TP 108	0.75	Ligh	t Brown	Silty Clay	0.0	63 - 0.1 mm	Stones	None
3515862		TP 109	0.60	Darl	Brown	Silty Sand	0.0	63 - 0.1 mm	Stones	None
3515863		TP 110	1.00	Darl	Brown	Sandy Loam	0	.1 - 2 mm	Stones	None
3515866		TP 111	0.70	Ligh	t Brown	Silt Loam	0.0	63 - 0.1 mm	None	None
3515869		TP 111	1.20	Darl	Brown	Silty Clay Loan	n 0.0	63 - 0.1 mm	Crushed Brick	Stones
3515870		TP 112	0.50	Ligh	t Brown	Silty Clay Loar	n 0.0	63 - 0.1 mm	Stones	None
3515872		TP 113	0.45	Ligh	t Brown	Silt Loam	0.0	63 - 0.1 mm	None	None
3515876		TP 114	0.80	Ligh	t Brown	Silt	0.0	63 - 0.1 mm	Vegetation	Stones
3515878		TP 115	0.30	Darl	Brown	Sandy Loam	0	.1 - 2 mm	Stones	None
3515882		TP 117	0.40	(Grey	Shale	0.0	63 - 0.1 mm	Vegetation	None
3515883		TP 118	0.70	Ligh	t Brown	Silt Loam	0.0	63 - 0.1 mm	Stones	None
3515886		TP 119	0.30	Ligh	t Brown	Clay Loam	<	0.063 mm	Stones	None
3515887		WS 101	0.40	Darl	Brown	Silty Clay	0.0	63 - 0.1 mm	Stones	Vegetation
3515888		WS 102	0.70	Darl	Brown	Silty Clay Loan	n 0.0	63 - 0.1 mm	Stones	None
3515891		WS 103	0.30	Ligh	t Brown	Silty Clay	0.0	63 - 0.1 mm	Stones	None
3515894		WS 104	0.40	Ligh	t Brown	Clay	<	0.063 mm	Stones	None
3515895		WS 105	0.30	Ligh	t Brown	Clay	<	0.063 mm	Stones	None
3515897		WS 106	0.50	Darl	Brown	Silty Clay Loar	n 0.0	63 - 0.1 mm	Stones	None
3515899		WS 107	0.50	Darl	Brown	Clay	<	0.063 mm	Stones	None
3515901		WS 108	0.40	Darl	Brown	Sandy Loam	0	.1 - 2 mm	Stones	None
3515902		WS 109	0.70	Darl	Brown	Clay Loam	<	0.063 mm	Vegetation	None
3515903		WS 110	0.60	Darl	Brown	Silt Loam	0.0	63 - 0.1 mm	Stones	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Job: H_W	523-40 /ARDELL_SHI 0534	F-37	Location: Customer: Attention:		ardell Armstrong L ke Kelly	.LP			Order Number: Report Number: Superseded Repo	SH3068 135537 ort: 132894			
Results Legend # ISO17025 accredited. M mCERTS accredited.	Cus	tomer Sample R	TP 101		TP 102		TP 103		TP 104	TP 105		TP 105	
Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * Swbcontracted test. * % recovery of the surrogate stant check the efficiency of the metho results of individual compounds i samples aren't corrected for the r (F) Trigger breach confirmed Component	d.The La	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s) AGS Reference Method	0.60 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515843		0.80 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515844		0.40 Soii/Solid 17/05/2011 21/05/2011 110523-40 3515847		0.50 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515852	0.30 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515853		0.90 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515854	
Moisture	%	PM114	13.7						7.84				
Moisture content ratio	%	PM114	15.8			-		-	8.51				
Dry matter content ratio	%	PM114	86.4			-		-	92.2				
Asbestos Containing	-	TM001				-	Possible ACM E	Det	No ACM Detected	No ACM Dete	cted		
Material Screen Phenol	<0.01	TM062 (S)			<0.01							<0.01	
Phenols, Total Detected monohydric	mq/kq mg/kg	TM062 (S)	<0.1		<0.1		<0.1		<0.1	<0.1		<0.1	
Organic Carbon, Total	<0.2 %	TM132	1.87	#			3.27	#					
Sulphur, Total	<0.02 %	TM132		π	0.03	#		n.				0.03	#
рН	1 pH Units	TM133	8.13	м	7.85	м	8.16	м	7.9 M	8.31	м	7.88	м
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	#	<0.6	#	<1.2	#	<0.6	<0.6	#	<0.6	#
Total Cyanide	<1 mg/kg	TM153			3.75	м						<1	м
Free Cyanide	<1 mg/kg	TM153			<1	м						<1	м
Thiocyanate	<1 mg/kg	TM153			<1	м						<1	м
Cyanide, Free	<1 mg/kg	TM153	<1	м			<1	м	<1 M	<1	м		
Sulphide, Easily liberated	<15 mg/kg	TM180			<15	#						<15	#
Arsenic	<0.6 mg/kg	TM181	18.2	м	25.6	м	41.2	м	12.8 M	20.7	м	6.09	м
Cadmium	<0.02 mg/kg	TM181	1.58	м	0.463	м	<0.02	м	0.49 M	0.502	м	0.447	м
Chromium	<0.9 mg/kg	TM181	19.7	м	25.6	м	810	м	23.1 M	166	м	28	м
Copper	<1.4 mg/kg	TM181	84.6	м	115	м	85.1	м	45.1 M	85.6	м	22.8	м
Lead	<0.7 mg/kg	TM181	1680	м	1150	м	73.1	м	26.1 M	95.8	м	21.5	м
Mercury	<0.14 mg/kg	TM181	0.147	м	0.61	м	<0.14	м	<0.14 M	<0.14	м	<0.14	м
Nickel	<0.2 mg/kg	TM181	20.8	М	39.2	м	50.6	м	49.3 M	34.7	м	31.9	м
Selenium	<1 mg/kg	TM181	<1	#	<1	#	2.69	#	<1 #	1.06	#	<1	#
Vanadium	<0.2 mg/kg	TM181	38.8	#			107	#	16.4 #	61.6	#		
Zinc	<1.9 mg/kg	TM181	1230	М	122	м	154	м	113 M	208	м	76	м
Sulphate, Total	<48 mg/kg	TM221	248	м	101	м	1340	м	217 M	1410	м	173	м
Boron, water soluble	<1 mg/kg	TM222			<1	м						<1	м
Water Soluble Sulphate as SO4 2:1 Extract	<0.008 q/l	TM243	<0.008	М			0.0879	м	0.0393 M	0.0582	М		
						_							
						_							

CERTIFICATE OF ANALYSIS

Job: H_	0523-40 _WARDELL_SH 110534	F-37	Location: Customer: Attention:		ardell Armstrong LLP ke Kelly	5			Order Number: Report Number: Superseded Repo	SH3068 135537 ort: 132894			
Results Legend # ISO17025 accredited. M mCERTS accredited.	Cu	stomer Sample R	TP 106		TP 107		TP 108		TP 109	TP 110	Т	TP 111	
M mCERTs accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate st check the efficiency of the me results of individual compound samples aren't corrected for tt (F) Tigger breach confirmed Component	thod. The ds within L	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s) AGS Reference	0.50 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515856		0.70 Soli/Solid 18/05/2011 21/05/2011 110523-40 3515860		0.75 Soli/Solid 18/05/2011 21/05/2011 110523-40 3515861		0.60 Soli/Solid 18/05/2011 21/05/2011 110523-40 3515862	1.00 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515863		0.70 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515866	
Asbestos Containing	-	TM001	No ACM Detec	ted	No ACM Detected			_		No ACM Detecte	d N	o ACM Dete	cted
Material Screen Phenol	<0.01	TM062 (S)							<0.01		+		
Phenols, Total Detected monohydric	mq/kq mg/kg	TM062 (S)	<0.1	_	<0.1		<0.1		<0.1	<0.1	T	<0.1	
Organic Carbon, Total	<0.2 %	TM132	1.43	#					3.29 #			10.1	#
Sulphur, Total	<0.02 %	TM132							0.07 #				
рН	1 pH Units	TM133	8.07	М	6.79 M		7.72	м	7.53 M	7.12	и	6.29	м
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	#	<0.6 #		<0.6	#	<1.2	<0.6	#	<1.2	#
Total Cyanide	<1 mg/kg	TM153							1.47 M				
Free Cyanide	<1 mg/kg	TM153							<1 M				
Thiocyanate	<1 mg/kg	TM153							<1 M				
Cyanide, Free	<1 mg/kg	TM153	<1	м	<1 M		<1	м		<1	и	<1	м
Sulphide, Easily liberated	<15 mg/kg	TM180							<15 #		Т		
Arsenic	<0.6 mg/kg	TM181	8.64	м	10 M		7.88	м	101 M	28.1	л	45.9	м
Cadmium	<0.02 mg/kg	TM181	0.511	М	<0.02 M		1.08	м	1.21 M	1.3	и	<0.02	м
Chromium	<0.9 mg/kg	TM181	24.1	М	24.6 M		24.3	м	98.8 M	25.4	и	19.7	м
Copper	<1.4 mg/kg	TM181	32.1	м	24 M		24.8	м	127 M	85.4	и	37.9	м
Lead	<0.7 mg/kg	TM181	21.2	м	21.7 M		21.7	м	160 M	70.1	и	22.2	м
Mercury	<0.14 mg/kg	TM181	<0.14	м	<0.14 M		<0.14	м	<0.14 M	<0.14	и	<0.14	м
Nickel	<0.2 mg/kg	TM181	34.3	м	36.1 M		10.6	м	29.6 M	44.5	и	30.3	м
Selenium	<1 mg/kg	TM181	<1	#	<1 #		<10	#	<10 #	2.1	#	<1	#
Thallium	<0.7 mg/kg	TM181					<7	#					
Vanadium	<0.2 mg/kg	TM181	22.8	#	24.9 #		29	#		43.6	#	25.6	#
Zinc	<1.9 mg/kg	TM181	92	м	92.2		51.1	м	219 M	313	и	62.9	,, M
Sulphate, Total	<48 mg/kg	TM221	748	м	765		161	м	505 M	258	л	4560	м
Boron, water soluble	<1 mg/kg	TM222							<1 M				
Water Soluble Sulphate as SO4 2:1 Extract	<0.008 g/l	TM243	0.0291	м	0.167 M		0.0226	м	<0.016 M	0.0414	и	0.204	м
						\vdash		_			+		\neg
								_			+		\neg

CERTIFICATE OF ANALYSIS

SDG: Job: Clien	ŀ	110523-40 H_WARDELL_ SH10534	SHF-37	Location: Customer: Attention:	Wa	ardell Armstrong LLF		Order Number: Report Number: Superseded Repo	SH3068 135537 prt: 132894	
	Results Legend		Customer Sample R	TP 111		TP 112	TP 113	TP 114	TP 115	TP 117
# M § diss.filt tot.unfilt * (F) Compo	ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Subcontracted test. % recovery of the surrogatic check the efficiency of the results of individual compo samples aren't corrected fo Trigger breach confirmed	method. The unds within	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	1.20 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515869		0.50 Soli/Solid 18/05/2011 21/05/2011 110523-40 3515870	0.45 Soil/Solid 19/05/2011 21/05/2011 110523-40 3515872	0.80 Soil/Solid 19/05/2011 21/05/2011 110523-40 3515876	0.30 Soli/Solid 19/05/2011 21/05/2011 110523-40 3515878	0.40 Soli/Solid 20/05/2011 21/05/2011 1105/2011 3515882
Moistu		%	PM114	17.5					12.5	
Moistu	re content ratio	%	PM114	21.2					14.3	
Dry ma	atter content ratio	%	PM114	82.5					87.5	
	tos Containing al Screen	-	TM001						No ACM Detected	
Pheno		<0.0 ² mg/kg				<0.01		<0.01		<0.01
Pheno monoh	ls, Total Detected	mg/k		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	ic Carbon, Total	<0.2	% TM132				0.46 #	2.48		
Sulphu	ır, Total	<0.02	% TM132			0.02		0.02		0.07
рН		1 pH Units		7.76	м	7.27 M	8.25 M	8.36	7.94 M	7.56 #
Chrom	ium, Hexavalent	<0.6 mg/kg	TM151	<0.6	#	<0.6	<0.6	<0.6	<0.6	<0.6
Total C	Cyanide	<1 mg				<1 M		<1 #		<1 #
Free C	yanide	<1 mg	/kg TM153			<1 M		<1 #		<1 #
Thiocy	anate	<1 mg	/kg TM153			<1 M		<1 #		<1 #
Cyanic	le, Free	<1 mg	/kg TM153	<1	м		<1 M		<1 M	
Sulphi	de, Easily liberated	l <15 mg/kg				<15 #		<15 #		<15 #
Arseni	с	<0.6 mg/kg	TM181	52.3	м	9.61 M	9.84 M	19.4	56.8 M	5.79 #
Cadmi	um	<0.02 mg/kg	2 TM181	<0.2	м	0.331 M	0.35 M	1.82	<0.02 M	0.307 #
Chrom	ium	<0.9 mg/kg	TM181	30.4	м	23.4 M	23.3 M	40	63.7 M	26.6 #
Coppe	r	<1.4 mg/kg	TM181	51	м	24 M	16.7 M	40.1	64.3 M	46.3 #
Lead		<0.7 mg/kg	TM181	43.5	м	16.5 M	17.8 M	34.4	52.6 M	16.9 #
Mercu	ry	<0.14 mg/kg	4 TM181	<0.14	м	<0.14 M	<0.14 M	<0.14	<0.14 M	<0.14 #
Nickel		<0.2 mg/kg	TM181	36.7	м	26.6 M	18.8 M	33.3	33.1 M	52.4 #
Seleni	um	<1 mg		<10	#	<1 #	<1 #	<10	<1 #	<1 #
Vanad	ium	<0.2 mg/kg		45.5	#		25.2 #		27.4 #	
Zinc		<1.9 mg/kg	TM181	79.8	м	74.4 M	59.8 M	130	115 M	105 #
Sulpha	ite, Total	<48 mg/kc	TM221	837	M	78.7 M	153 M	74.5	2040 M	136 #
Boron,	water soluble	<1 mg/			TVI	<1 M	IV.		IVI	<1 #
	Soluble Sulphate a	as <0.00 g/l	8 TM243	0.2	м	IVI	<0.016 M	<0.008	0.123 M	#
304.2	. TEAUdU	q/I			IVI		IV	#	IVI	

CERTIFICATE OF ANALYSIS

Job: H	0523-40 _WARDELL_SH 110534	F-37	Location: Customer: Attention:		ardell Armstrong ke Kelly	LLP			Order Number: Report Number: Superseded Repo	SH3068 135537 ort: 132894			
Results Legend	Cu	stomer Sample R	TP 118		TP 119		WS 101		WS 102	WS 103		WS 104	
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. tiss.fitt Dissolved / fittered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * Subcontracted test. * Steroovery of the surrogate si check the efficiency of the me results of individual compoun samples aren't corrected for the (F) Trigger breach confirmed	tandard to thod. The L ds within L he recovery	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s) AGS Reference			0.30 Soil/Solid 20/05/2011 21/05/2011 110523-40 3515886		0.40 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515887		0.70 Soli/Solid 16/05/2011 21/05/2011 110523-40 3515888	0.30 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515891		0.40 Soii/Solid 16/05/2011 21/05/2011 110523-40 3515894	
Component Moisture	LOD/Units %	Method PM114	17.8					_			+		
											+		
Moisture content ratio	%	PM114	21.7										
Dry matter content ratio	%	PM114	82.2										
Asbestos Containing Material Screen	-	TM001	No ACM Detec	ted						No ACM Detected	d		
Phenol	<0.01	TM062 (S)			<0.01		<0.01		<0.01		T	<0.01	
Phenols, Total Detected	mg/kg mg/kg	TM062 (S)	<0.1		<0.1		<0.1		<0.1	<0.1	t	<0.1	
monohydric Organic Carbon, Total	<0.2 %	TM132					2.1				+	0.971	
Sulphur, Total	<0.02 %	TM132			0.04		0.04	#	0.16		+	0.02	#
pH	1 pH	TM133	8.23		7.65	#	7.86	#	#	8.67	+	8.08	#
	Units			М		М		М	М	N	и		м
Chromium, Hexavalent	<0.6 ma/ka	TM151	<0.6	#	<0.6	#	<0.6	#	1.37 #	<0.6	#	<0.6	#
Total Cyanide	<1 mg/kg	TM153			<1	м	<1	м	8.7 M			1.13	м
Free Cyanide	<1 mg/kg	TM153			<1	м	<1	м	<1 M		T	<1	м
Thiocyanate	<1 mg/kg	TM153			<1		<1		<1		t	<1	
Cyanide, Free	<1 mg/kg	TM153	<1			М		М	M	<1			М
PCB congener 28	<3 µg/kg	TM168		М					<3	<3	N		
PCB congener 52	<3 µg/kg								M <3	<3	N		
PCB congener 101		TM168							M	<3	N		
	<3 µg/kg								M		и		
PCB congener 118	<3 µg/kg								<3 M		и		
PCB congener 138	<3 µg/kg	TM168							<3 M	<3 N	и		
PCB congener 153	<3 µg/kg	TM168							<3 M	<3	и		
PCB congener 180	<3 µg/kg	TM168						_	<3 M	<3	И		
PCBs, Total ICES 7	µg/kg	TM168							<3	<3	VI		_
Sulphide, Easily liberated	<15	TM180			<15		<15	_	<15		t	<15	_
Arsenic	mq/kq <0.6	TM181	15.7		8.26	#	40.3	#	# 625	10.8	+	9.26	#
Cadmium	mq/kq <0.02	TM181	<0.2	М	0.363	М	0.577	М	M 1.82	۸ <0.02	N	0.345	М
Chromium	mq/kq <0.9	TM181	25.3	М	24	М	68.5	М	M 477		и	29.7	м
	mg/kg			М		М		М	М	N	и		м
Copper	<1.4 mg/kg	TM181	31.9	м		м	78.5	м	447 M		и	21.6	м
Lead	<0.7 mg/kg	TM181	40.1	м	17.3	м	105	м	485 M	92.5 N	и	19.7	м
Mercury	<0.14 mg/kg	TM181	<0.14	м	<0.14	м	<0.14	м	0.936 M	<0.14	и	<0.14	м
Nickel	<0.2	TM181	34.5	м	38.1	м	28	м	36.8 M	29.2		34.8	м
Selenium	mg/kg <1 mg/kg	TM181	<10		<1		<5		1.77	<10	Т	<1	
Vanadium	<0.2	TM181	30.3	#		#		#	#	46.1	#		#
Zinc	mq/kq <1.9	TM181	113	#	81.4		126		396	91.7	#	79.1	
Sulphate, Total	mg/kg <48	TM221	272	М	310	М	135	М	M 1440	N 217	N	49.9	м
	mg/kg		212	М	<1	М	<1	М	<1 N		N	<1	м
Boron, water soluble	<1 mg/kg	1111222			<1	М	<1	м	<1 M			\$1	м

CERTIFICATE OF ANALYSIS

Validated

SDG: 110523-40 Location: Order Number: SH3068 Job: H_WARDELL_SHF-37 Customer: Wardell Armstrong LLP 135537 Report Number: **Client Reference:** SH10534 Attention: Mike Kelly Superseded Report: 132894

Results Legend # ISO17025 accredited.	Cu	istomer Sample R	TP 118	TP 119	WS 101	WS 102	WS 103	WS 104
M mCERTS accredited. § Non-conforming work.		Depth to 1	0.70					
aq Aqueous / settled sample.		Depth (m) Sample Type	0.70 Soil/Solid	0.30 Soil/Solid	0.40 Soil/Solid	0.70 Soil/Solid	0.30 Soil/Solid	0.40 Soil/Solid
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Date Sampled	20/05/2011	20/05/2011	16/05/2011	16/05/2011	16/05/2011	16/05/2011
* Subcontracted test.		Date Received	21/05/2011	21/05/2011	21/05/2011	21/05/2011	21/05/2011	21/05/2011
** % recovery of the surrogate standar check the efficiency of the method.	The	SDG Ref	110523-40	110523-40	110523-40	110523-40	110523-40	110523-40
results of individual compounds wit	thin L	ab Sample No.(s) AGS Reference	3515883	3515886	3515887	3515888	3515891	3515894
samples aren't corrected for the rec (F) Trigger breach confirmed	overy	A03 Reference						
Component	LOD/Units	Method						
Water Soluble Sulphate as	<0.008	TM243	0.0265		<0.008		0.0206	0.0154
SO4 2:1 Extract	q/l		M		M		M	M
		1 1						
		1 1						
		+						I
								I
		1 1						
		1 1						
		1 1						
		1 1						
		1 1						
		1 1						
		1 1						
								I
								I
								I
		+						
L								

CERTIFICATE OF ANALYSIS

Job: H_	0523-40 WARDELL_SH 10534	F-37	Location: Customer: Attention:		ardell Armstrong ke Kelly	LLP			Order Number: Report Number: Superseded Repo	SH3068 135537 rt: 132894			
Results Legend	Cu	stomer Sample R	WS 105		WS 106		WS 107		WS 108	WS 109		WS 110	
ISO17025 accredited. M mCERTS accredited. Son-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / fittered sample. tot.unfit Tota/ unfittered sample. Subcontracted test. w recovery of the surrogate statcheck the efficiency of the mett results of individual compound samples aren't corrected for th	nod. The Li s within Li	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s) AGS Reference	0.30 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515895		0.50 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515897		0.50 Soii/Solid 17/05/2011 21/05/2011 110523-40 3515899		0.40 Soli/Solid 17/05/2011 21/05/2011 110523-40 3515901	0.70 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515902		0.60 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515903	
(F) Trigger breach confirmed Component	LOD/Units	Method											
Moisture	%	PM114							24.2				
Moisture content ratio	%	PM114							31.9				—
Dry matter content ratio	%	PM114							75.8				_
Asbestos Containing Material Screen	-	TM001	No ACM Deteo	cted					No ACM Detected			No ACM Detec	cted
Phenol	<0.01 mg/kg	TM062 (S)			<0.01					<0.01			
Phenols, Total Detected monohydric	mg/kg	TM062 (S)	<0.1		<0.1		<0.1		<0.1	<0.1		<0.1	
Organic Carbon, Total	<0.2 %	TM132					5.69	#		0.927	#	2.43	#
Sulphur, Total	<0.02 %	TM132			0.13	#				0.04	#		
рН	1 pH Units	TM133	8.15	м	8.36	м	8.25	м	7.91 M	7.94	м	8.4	м
Chromium, Hexavalent	<0.6 ma/ka	TM151	<0.6	#	<1.2	#	<0.6	#	<3 #	<0.6	#	<0.6	#
Total Cyanide	<1 mg/kg	TM153			23.8	м				<1	м		
Free Cyanide	<1 mg/kg				<1	м				<1	м		
Thiocyanate	<1 mg/kg	TM153			<1	м				<1	м		
Cyanide, Free	<1 mg/kg		<1	м			<1	м	<1 M			<1	м
PCB congener 28	<3 µg/kg	TM168	<3	м					<3 M				
PCB congener 52	<3 µg/kg	TM168	<3	м					<3 M				
PCB congener 101	<3 µg/kg	TM168	<3	М					<3 M				
PCB congener 118	<3 µg/kg	TM168	<3	м					<3 M				
PCB congener 138	<3 µg/kg	TM168	<3	м					<3 M				
PCB congener 153	<3 µg/kg	TM168	<3	М					<3 M				
PCB congener 180	<3 µg/kg	TM168	<3	М					<3 M				
PCBs, Total ICES 7	µg/kg	TM168	<3						<3				
Sulphide, Easily liberated	<15 mq/kq	TM180			<15	#				<15	#		
Arsenic	<0.6 mq/kq	TM181	5.56	М		м	25.1	м	160 M	15.8	м	17.2	м
Cadmium	<0.02 mg/kg	TM181	<0.02	М		м	0.543	м	<0.02 M	0.481	м	<0.02	м
Chromium	<0.9 ma/ka	TM181	26.6	М		М	32.4	м	168 M	25.9	м	20.3	м
Copper	<1.4 ma/ka	TM181	24.5	М		М	41.7	м	259 M	23.6	м	30.6	м
Lead	<0.7 mg/kg	TM181	30.5	М		М	112	м	508 M	23.8	м	31.1	м
Mercury	<0.14 mg/kg	TM181	<0.14	М		М	<0.14	м	0.895 M	<0.14	м	<0.14	м
Nickel	<0.2 mg/kg	TM181	35.8	М	38	М	28.4	м	22.4 M	33.6	м	35.7	м
Selenium	<1 mg/kg		<1	#	<1	#	1.02	#	<10 #	1.06	#	<1	#
Vanadium	<0.2 mg/kg	TM181	20.1	#	000		34.8	#	47.4 #	00.4		21.9	#
Zinc	<1.9 mg/kg	TM181	87.5	М		М	96.2	м	329 M	90.1	м	88.2	м
Sulphate, Total	<48 mg/kg	TM221	396	М		М	598	м	1360 M	139	м	254	м
Boron, water soluble	<1 mg/kg	TM222			<1	м				<1	м		

CERTIFICATE OF ANALYSIS

Validated

SDG: 110523-40 Location: Order Number: SH3068 Job: H_WARDELL_SHF-37 Customer: Wardell Armstrong LLP 135537 Report Number: **Client Reference:** SH10534 Attention: Mike Kelly Superseded Report: 132894

# 1	Results Legend SO17025 accredited.	Cu	stomer Sample R	WS 105	WS 106	WS 107	WS 108	WS 109	WS 110
M n	nCERTS accredited.								
aq A	Non-conforming work. Aqueous / settled sample.		Depth (m)		0.50	0.50	0.40	0.70	0.60
	Dissolved / filtered sample. Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 16/05/2011	Soil/Solid 16/05/2011	Soil/Solid 17/05/2011	Soil/Solid 17/05/2011	Soil/Solid 17/05/2011	Soil/Solid 17/05/2011
* 5	Subcontracted test.		Date Received	21/05/2011	21/05/2011	21/05/2011	21/05/2011	21/05/2011	21/05/2011
	% recovery of the surrogate standar sheck the efficiency of the method. 1	The .	SDG Ref	110523-40 3515895	110523-40 3515897	110523-40 3515899	110523-40 3515901	110523-40 3515902	110523-40 3515903
	esults of individual compounds wit samples aren't corrected for the rec		ab Sample No.(s) AGS Reference	3313033	3313037	3313033	3313901	3313302	3313903
(F) T	rigger breach confirmed								
Compone		LOD/Units	Method	0.400		0.010	0.44	0.0054	-0.000
	oluble Sulphate as	<0.008 q/l	TM243	0.102 M		0.013 M	0.14 M	0.0351 M	<0.008 M
304 2.1		Q/I		111		IVI	- Wi	IVI	
—									<u> </u>
—									
									<u> </u>
L									
			↓						
—									
—									

CERTIFICATE OF ANALYSIS

$\mathbf{\Phi}$	ALCONTO			CER	RTI	FICATE O	F AI	NALYSIS				<u> </u>	Validated
SDG Job: Clier		110523-40 H_WARDELL SH10534	_SHF-37	Location: Customer: Attention:		ardell Armstrong ke Kelly	J LLP			Order Number: Report Number: Superseded Repor	SH3068 135537 t: 132894		
	by GCMS	51110334		Attention.	IVII	te relly				Superseued Repor	• 152054		
# M § aq diss.filt tot.unfilt * *	Results Legen ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled samp Dissolved / filtered samp Total / unfiltered sample. Subcontracted test. % recovery of the surrog check the efficiency of th results of individual com samples aren't corrected Trigger breach confirme	e. le. se method. The pounds within for the recovery d	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.80 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515844		TP 105 0.90 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515854		TP 109 0.60 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515862		TP 112 0.50 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515870	TP 114 0.80 Soli/Solid 19/05/2011 21/05/2011 110523-40 3515876		TP 117 0.40 Soil/Solid 20/05/2011 21/05/2011 110523-40 3515882
Compo Napht	nent halene	LOD/U <9 με		55.4		11.7	_	166		<9	<9		155
Acena	phthylene	<1	2 TM218	<12	Μ	<12	М	81.9	м	M <12	<12	#	# <12
Acena	phthene	μq/k <8 μί		<8	M	<8	м	186	м	M <8	<8	#	# <8
Fluore	ne	<10 µg/k		<10	M	<10	M M	153	M M	<10 M	<10	#	# 12.6 #
Phena	Inthrene	<1: μq/k	5 TM218	92.4	м	24	м	1620	м	<15 M	77	#	206 #
Anthra	icene	<10 	6 TM218	<16	м	24.3	м	442	м	<16 M	<16	#	<16 #
Fluora	nthene	<1 µg/k	7 TM218	80.9	М	<17	м	2860	м	<17 M	70.7	#	23.8 #
Pyren		<1: µq/k	q	73.2	М	18.7	м	2400	м	<15 M	62.3	#	26.8 #
	a)anthracene	<14 µq/k	q	69.6	М	24	м	1600	м	<14 M	53.9	#	24.8 #
Chryse		<10 µq/k	q	57.5 77.8	М	23.1 40.2	м	2200	м	<10 M <15	56.1 43.7	#	33.1 # 25.8
	(b)fluoranthene	<1: µq/k <14	q	27.6	М	40.2 <14	м	810	м	<15 M <14	19.8	#	25.8 # <14
	(a)pyrene	μq/k	q	50.4	М	<14	м	1560	м	<14 M	26.9	#	<14 #
	o(1,2,3-cd)pyrene	µg/k	q	31.9	Μ	<18	м	992	м	<18 M	<18	#	<18
	zo(a,h)anthracen	µg/k	q	<23	Μ	<23	М	310	М	M <23	<23	#	# <23
Benzo	(g,h,i)perylene	μq/k <24	4 TM218	40.9	М	<24	М	1100	М	M <24	29.5	#	# <24
PAH, ⁻ USEP	Total Detected A 16	µq/k	8 TM218	658	M	166	<u>M</u>	18000	M	M <118	440	#	# 508
			_				_		_				
									_				
									_				
							_		_				
							_						
									_				

CERTIFICATE OF ANALYSIS

U						CEF	RTI	FICATE O	FΑ	NALYSIS						
SDG Job: Clier		110523 H_WAR SH105	RDELL_	SHF-37		Location: Customer: Attention:		ardell Armstron ke Kelly	g LLP			Order Number: Report Number: Superseded Repor	SH3068 135537 t: 132894	}		
	by GCMS	onnoo	04			Automoti.		te rteny					- 102004			
	Results Legend	ł		Customer Sam	ple R	TP 119		WS 101		WS 102		WS 104	WS 106		WS 109	
# M § diss.filt tot.unfilt * *	ISO17025 accredited. mCERTS accredited. Mon-conforming work. Aqueous / settled sample Dissolved / filtered sample. Subcontracted test. % recovery of the surrogo check the efficiency of th results of individual com samples aren't corrected Trigger breach confirmed	le. ate standard e method. Ti pounds with for the reco	he in	Sample Date Sar Date Rec	npled eived G Ref Io.(s)	0.30 Soil/Solid 20/05/2011 21/05/2011 110523-40 3515886		0.40 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515887		0.70 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515888		0.40 Soil/Solid 16/05/2011 21/05/2011 1105/23-40 3515894	0.50 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515897		0.70 Soii/Solid 17/05/201 21/05/201 110523-40 3515902	1 1 0
Compo			LOD/Un													
Napht	halene		<9 µg	/kg TM2 [/]	8	36.2	м	49	м	6390	м	11.7 M	567	м	85.7	м
Acena	phthylene		<12 µq/ka	1		<12	м	28.3	м	395	м	<12 M	68.2	м	<12	м
Acena	phthene		<8 µg	/kg TM2′	8	<8	м	55	м	4050	м	<8 M	92.7	м	<8	м
Fluore	ne		<10 µg/ko		8	<10	м	36.4	м	3590	м	<10 M	71.7	м	<10	м
Phena	inthrene		<15 µg/ko		8	179	м	620	м	29600	м	33.5 M	1350	м	196	м
Anthra	icene		<16 µq/ka		8	18.9	м	174	М	7930	м	<16 M	259	м	<16	м
Fluora	nthene		<17 µq/ka	TM2	8	130	м	2040	М	35800	м	33 M	2290	М	64.5	м
Pyren	e		<15 µg/ko	TM2	8	125	м	1830	М	28600	м	30.4 M	2060	М	60.4	м
Benz(a	a)anthracene		<14 µg/ko	TM2'	8	82.3	м	1000	м	16500	м	31.4 M	1550	м	54.4	м
Chryse	ene		<10 µg/ko	TM2	8	98.2	м	951	м	14000	м	24.7 M	1460	м	67.8	м
Benzo	(b)fluoranthene		<15 µq/ko	TM2	8	147	м	1270	м	16500	м	37.5 M	2260	м	62	м
Benzo	(k)fluoranthene		<14 µq/ko	TM2	8	39.9	м	528	м	7130	м	<14 M	859	м	<14	м
Benzo	(a)pyrene		<15 µg/ko	TM2	8	69.2	м	1050	м	16300	м	19.9 M	1980	м	29.5	м
Indend	o(1,2,3-cd)pyrene		<18 µq/ka	TM2	8	46.3	м	642	м	8940	м	<18 M	1470	м	<18	м
Diben	zo(a,h)anthracene	e	<23 µq/ka	TM2	8	<23	м	165	м	2530	м	<23 M	400	м	<23	м
Benzo	(g,h,i)perylene		<24 µg/ko	TM2	8	84.6	м	791	м	9650	м	<24 M	1850	м	41.2	м
PAH, USEP	Total Detected A 16		<118 µq/ko	B TM2	8	1060		11200		208000		222	18600		661	
				_												
				_												
				_												
				_												
					\square											
					\square											
					\square											
					\square											
					\square											

CERTIFICATE OF ANALYSIS

SDC: 11/023-40 H_WADELL_SHF-37 Location: Custome: Marking Wardel Armstrong LLP Order Number: Report Number: Super-State SH3081 135537 Strem Voice Fundamental Reference: H_WADELL_SHF-37 Custome: Marking Wardel Armstrong LLP Order Number: Super-State 135537 Strem Voice Fundamental Reference: Fundamental Strem Voice Fundamental Reference: The Strem Fundamental Reference: The Strem																					
International action of the sector analysis of the sector action of th																					
• •																					
Phenol <100 TM157 <100 <200 <100 <100 <100 <100 Pentachlorophenol <100	TP 107 0.70 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515860																				
	<100																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
unit unit< <th>unit unit<<th>unit unit<<th>unit unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit unit< <th>unit unit<<th>unit unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit unit< <th>unit unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th></th>	unit< <th>unit<<th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th></th>	unit< <th>unit<<th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th></th>	unit< <th>unit<<thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th></th>	unit< <thunit<<th>unit<<thunit<<thunit<<th>unit<<thunit<<th>u</thunit<<th></thunit<<thunit<<th></thunit<<th>	<100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<100																				
uaka uaka reach reach <thr< td=""><td><100</td></thr<>	<100																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<100																				
Hexachlorocyclopentadien <100 TM157 <200 <100 <200 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <th< td=""><td><100</td></th<>	<100																				
Hexachlorobutadiene <100 TM157 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	<100																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<100																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<100																				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<100																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<100																				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<100																				
Dibenzofuran <100 µa/kq TM157 457 284 216 <100 110 1 Carbazole <100	<100																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<100																				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<100																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<100																				
bis(2-Chloroethoxy)methan e < 100 µq/kq TM157 µq/kq < 100 < 200 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 </td <td><100</td>	<100																				
bis(2-Chloroethyl)ether <100 TM157 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <	<100																				
Azobenzene <100 TM157 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	<100																				
4-Nitrophenol <100 µa/ka TM157 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100<	<100																				
4-Nitroaniline <100 µq/kq TM157 7 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <1	<100																				
4-Methylphenol <100 TM157 <100 <200 <100 <100 <100 4-Chlorophenylphenylether <100	<100																				
4-Chlorophenylphenylether <100 TM157 <100 <200 <100 <100 <100	<100																				
	<100																				
4-Chloroaniline <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
4-Chloro-3-methylphenol <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
4-Bromophenylphenylether <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
3-Nitroaniline <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
2-Nitrophenol <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
2-Nitroaniline <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
2-Methylphenol <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
1,2,4-Trichlorobenzene <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
2-Chlorophenol <100 TM157 <100 <200 <100 <100 <100 <100	<100																				
2,6-Dinitrotoluene <100 TM157 <100 <200 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100<	<100																				
2,4-Dinitrotoluene <100 TM157 <100 <200 <100 <100 <100 <100	<100																				

CERTIFICATE OF ANALYSIS

Validated

SDG: 110523-40 Location: Order Number: SH3068 Job: H_WARDELL_SHF-37 Wardell Armstrong LLP 135537 Customer: Report Number: **Client Reference:** SH10534 Attention: Mike Kelly Superseded Report: 132894 Semi Volatile Organic Compounds

Semi Volatile Organic Compo Results Legend # ISO17025 accredited.		ompound	s						
		Cu	istomer Sample R	TP 101	TP 103	TP 104	TP 105	TP 106	TP 107
м	mCERTS accredited.								
§ aq	Non-conforming work. Aqueous / settled sample.		Depth (m)	0.60	0.40	0.50	0.30	0.50	0.70
diss.filt	Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
tot.unfilt	Total / unfiltered sample. Subcontracted test.		Date Sampled Date Received	17/05/2011 21/05/2011	17/05/2011 21/05/2011	17/05/2011 21/05/2011	18/05/2011 21/05/2011	18/05/2011 21/05/2011	18/05/2011 21/05/2011
**	% recovery of the surrogate standar		SDG Ref	110523-40	110523-40	110523-40	110523-40	110523-40	110523-40
	check the efficiency of the method. results of individual compounds wit		ab Sample No.(s)	3515843	3515847	3515852	3515853	3515856	3515860
	samples aren't corrected for the rec		AGS Reference						
(F) Compo	Trigger breach confirmed	LOD/Units	Method						
	methylphenol	<100	TM157	<100	<200	<100	<100	<100	<100
2,4-01	meuryiphenoi	µg/kg	1101137	<100	~200	<100	<100	<100	<100
2 4-Di	chlorophenol	<100	TM157	<100	<200	<100	<100	<100	<100
_,		µq/kq							
2,4,6-1	Frichlorophenol	<100	TM157	<100	<200	<100	<100	<100	<100
		µq/kq							
2,4,5-1	Frichlorophenol	<100	TM157	<100	<200	<100	<100	<100	<100
		µq/kq							
1,4-Di	chlorobenzene	<100	TM157	<100	<200	<100	<100	<100	<100
10.01		µq/kq	714457			-100	.100	.100	
1,3-Di	chlorobenzene	<100	TM157	<100	<200	<100	<100	<100	<100
1.2 Di	ablarabanzana	µq/kq <100	TM157	<100	<200	<100	<100	<100	<100
1,2-01	chlorobenzene	<100 µg/kg	110137	<100	<200	<100	<100	<100	<100
2-Chlo	ronaphthalene	<100	TM157	<100	<200	<100	<100	<100	<100
		µg/kg			-200				100
2-Meth	nylnaphthalene	<100	TM157	373	260	982	334	180	<100
		µq/kq							
Acena	phthylene	<100	TM157	<100	<200	<100	<100	<100	<100
		µq/kq							
Acena	phthene	<100	TM157	597	442	<100	<100	127	<100
		µq/kq							
Anthra	icene	<100	TM157	1030	1220	<100	<100	796	<100
		µq/kq							
Benzo	(a)anthracene	<100	TM157	1980	4630	<100	236	2350	<100
Depre	(h)fuoranthona	µq/kq	T14457	1100	4070	104	070	1000	<100
Benzo	(b)fluoranthene	<100	TM157	1100	4670	124	272	1860	<100
Benzo	(k)fluoranthene	µq/kq <100	TM157	1480	4140	<100	287	1830	<100
Delizo	(K)IIUUI aIIIII EIIE	μq/kq	1101137	1400	4140	<100	207	1650	\$100
Benzo	(a)pyrene	<100	TM157	1720	5710	<100	305	2400	<100
	(-)[]	µq/kq							
Benzo	(g,h,i)perylene	<100	TM157	746	3210	<100	199	1250	<100
		µq/kq							
Chryse	ene	<100	TM157	2020	4600	198	344	2210	<100
		µq/kq							
Fluora	nthene	<100	TM157	4520	8750	176	445	4790	<100
		µq/kq	714457	100	077	.100	. 100	110	
Fluore	ne	<100	TM157	483	377	<100	<100	116	<100
Indend	o(1,2,3-cd)pyrene	µq/kq <100	TM157	690	3020	<100	164	1140	<100
Indene	(1,2,0-cu)pyrene	µq/kq	111107	050	5020		104	1140	
Phena	nthrene	<100	TM157	4550	4350	622	382	1950	<100
		µq/kq							
Pyrene	5	<100	TM157	3880	7940	181	425	4140	<100
		µq/kq							
Naphti	halene	<100	TM157	795	381	387	162	166	<100
		µq/kq							
Dibenz	zo(a,h)anthracene	<100	TM157	178	739	<100	<100	255	<100
—		µq/kq							
1									
—			+						
1									
—									
—			+						
1									

CERTIFICATE OF ANALYSIS

				CER	TIFICATE OF AI	NALYSIS			
SDG: Job: Client R		23-40 ARDELL_\$ 0534	SHF-37		Wardell Armstrong LLP Mike Kelly		Order Number: Report Number: Superseded Report:	SH3068 135537 132894	
Semi Vo	platile Organic C	ompour	nds						
M mC § Nor aq Aq diss.filt Dis tot.unfilt Tot * Sut * % r che res san	Results Legend 017025 accredited. ERTS accredited. ERTS accredited. ERTS accredited. ueous / settled sample. tal / unfiltered sample. boohtracted test. recovery of the surrogate stand ext he efficiency of the method sults of individual compounds w mples aren't corrected for the re igger breach confirmed	ard to 1. The vithin	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	TP 108 0.75 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515861	TP 110 50i/Solid 18/05/2011 21/05/2011 110523-40 3515863	TP 111 0.70 Soli/Solid 18/05/2011 21/05/2011 110523-40 3515866	TP 111 1.20 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515869	TP 113 0.45 Soli/Solid 19/05/2011 21/05/2011 1105/2011 3515872	TP 115 0.30 Soli/Solid 19/05/2011 21/05/2011 110523-40 3515878
Componer Phenol	nt	LOD/Uni <100		<100	<100	<100	<100	<100	<100
		µq/kq							
Pentachlo	orophenol	<100 µq/kq		<100	<100	<100	<100	<100	<100
n-Nitroso	o-n-dipropylamine	<100 µq/kq		<100	<100	<100	<100	<100	<100
Nitrobenz	zene	<100 µq/kq		<100	<100	<100	<100	<100	<100
Isophoror	ne	<100 µg/kg	TM157	<100	<100	<100	<100	<100	<100
Hexachlo	proethane	<100	TM157	<100	<100	<100	<100	<100	<100
	procyclopentadien	µq/kq <100	TM157	<200	<100	<100	<100	<200	<100
e Hexachlo	probutadiene	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
Hexachlo	probenzene	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
n-Dioctyl	phthalate	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
Dimethyl	phthalate	µq/kq <100		<100	<100	<100	<100	<100	<100
Diethyl pł	hthalate	µq/kq <100		<100	<100	<100	<100	<100	<100
n-Dibutyl	phthalate	µq/kq <100		<100	<100	<100	<100	<100	<100
Dibenzof	uran	µq/kq <100		<100	<100	264	<100	<100	224
Carbazol	le	µq/kq <100		<100	<100	<100	<100	<100	<100
Butylbenz	zyl phthalate	µq/kq <100		<100	<100	<100	<100	<100	<100
bis(2-Eth	ylhexyl) phthalate	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
bis(2-Chl	loroethoxy)methan	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
e bis(2-Chl	loroethyl)ether	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
Azobenze	ene	µq/kq <100		<100	<100	<100	<100	<100	<100
4-Nitroph	ienol	µq/kq <100		<100	<100	<100	<100	<100	<100
4-Nitroan	niline	µq/kq <100		<100	<100	<100	<100	<100	<100
4-Methylp	phenol	µq/kq <100		<100	<100	<100	<100	<100	<100
	phenylphenylether	µq/kq <100		<100	<100	<100	<100	<100	<100
4-Chloroa		µq/kq <100		<100	<100	<100	<100	<100	<100
4-Chloro-	-3-methylphenol	µq/kq <100		<100	<100	<100	<100	<100	<100
4-Bromor	phenylphenylether	µq/kq <100		<100	<100	<100	<100	<100	<100
3-Nitroan		µq/kq <100		<100	<100	<100	<100	<100	<100
2-Nitroph	ienol	µq/kq <100		<100	<100	<100	<100	<100	<100
2-Nitroan		µq/kq <100		<100	<100	<100	<100	<100	<100
2-Methylp		µq/kq <100		<100	<100	<100	<100	<100	<100
	chlorobenzene	µq/kq <100		<100	<100	<100	<100	<100	<100
2-Chlorop		µq/kq <100		<100	<100	<100	<100	<100	<100
2,6-Dinitr	-	µq/kq <100		<100	<100	<100	<100	<100	<100
2,4-Dinitr		μq/kq <100		<100	<100	<100	<100	<100	<100
2,4-0/110		µq/kq		-100	\$100	100		- 100	

CERTIFICATE OF ANALYSIS

SDG: 110523-40 Location: Order Number: SH3068 Job: H_WARDELL_SHF-37 Wardell Armstrong LLP 135537 Customer: Report Number: **Client Reference:** SH10534 Attention: Mike Kelly Superseded Report: 132894

Validated

Semi Volatile Organic Compounds

Semi Volatile Organic Compo		ompound	ds						
*		Ci	ustomer Sample R	TP 108	TP 110	TP 111	TP 111	TP 113	TP 115
M §	mCERTS accredited. Non-conforming work.								
aq	Aqueous / settled sample.		Depth (m) Sample Type	0.75 Soil/Solid	1.00 Soil/Solid	0.70 Soil/Solid	1.20 Soil/Solid	0.45 Soil/Solid	0.30 Soil/Solid
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Date Sampled	18/05/2011	18/05/2011	18/05/2011	18/05/2011	19/05/2011	19/05/2011
*	Subcontracted test. % recovery of the surrogate standar	d to	Date Received	21/05/2011	21/05/2011	21/05/2011	21/05/2011	21/05/2011 110523-40	21/05/2011 110523-40
	check the efficiency of the method. results of individual compounds wit	The	SDG Ref Lab Sample No.(s)	110523-40 3515861	110523-40 3515863	110523-40 3515866	110523-40 3515869	3515872	3515878
	samples aren't corrected for the rec		AGS Reference						
(F) Compo	Trigger breach confirmed	LOD/Units	Method						
-	nethylphenol	<100	TM157	<100	<100	<100	<100	<100	<100
2,4 01	in a ship in a s	µg/kg		100	100	100			100
2,4-Dio	chlorophenol	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
2,4,6-1	richlorophenol	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
	richlorophenol	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
	chlorobenzene	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
	chlorobenzene	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
	chlorobenzene	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
	ronaphthalene	<100 µq/kq	TM157	<100	<100	<100	<100	<100	<100
	ylnaphthalene	<100 µq/kq	TM157	<100	<100	607	239	<100	1160
	phthylene	<100 µq/kq <100	TM157 TM157	<100	<100	<100	<100	<100	<100
Anthra		µq/kq	TM157	<100	132	<100	226	<100	<100
	(a)anthracene	<100 µq/kq <100	TM157 TM157	<100	544	128	628	<100	191
	(b)fluoranthene	μq/kq <100	TM157	<100	523	<100	502	<100	236
	(k)fluoranthene	μq/kq <100	TM157	<100	466	<100	456	<100	150
	(a)pyrene	μq/kq <100	TM157	<100	594	<100	568	<100	204
	(g,h,i)perylene	μq/kq <100	TM157	<100	335	<100	290	<100	179
Chryse		µq/kq <100	TM157	<100	569	243	636	<100	296
Fluora		µq/kq <100	TM157	<100	1040	135	1330	<100	312
Fluore	ne	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
	(1,2,3-cd)pyrene	µq/kq <100	TM157	<100	291	<100	267	<100	133
Phena	nthrene	µq/kq <100	TM157	<100	618	931	916	<100	801
Pyrene	2	µq/kq <100	TM157	<100	950	174	1130	<100	317
Naphth		µq/kq <100	TM157	<100	<100	187	133	<100	309
Dibenz	o(a,h)anthracene	µq/kq <100	TM157	<100	<100	<100	<100	<100	<100
		µq/kq							
			+ +						

CERTIFICATE OF ANALYSIS

	ALCONTOL	ooratorroe	, 	CER	TIFICATE OF A	NALYSIS		L	valuated
SDG: Job: Clien	н	110523-40 H_WARDELL_ SH10534	_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly		Order Number: Report Number: Superseded Report:	SH3068 135537 132894	
	Volatile Organi		Inds						
tot.unfilt * **	Results Legend ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Subcontracted test. % recovery of the surrogate check the efficiency of the n results of individual compox samples aren't corrected for Trigger breach confirmed	method. The unds within	Customer Sample R Depth (m) Sample Type Date Received Date Received SDG Ref Lab Sample No.(s) AGS Reference	TP 118 0.70 Soil/Solid 20/05/2011 21/05/2011 110523-40 3515883	WS 103 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515891	WS 105 0.30 Soli/Solid 16/05/2011 21/05/2011 110523-40 3515895	WS 107 0.50 Soli/Solid 17/05/2011 21/05/2011 110523-40 3515899	0.40 Soli/Solid 17/05/2011 21/05/2011 110523-40 3515901	WS 110 0.60 Soil/Solid 17/05/2011 21/05/2011 1105/2011 3515903
Compose Pheno		LOD/U		<100	<100	<100	<100	<1000	<100
		μq/k <10	q	<100	<100	<100	<100	<1000	<100
	chlorophenol	µq/k	q						
n-Nitro	oso-n-dipropylamine	е <10 µg/k		<100	<100	<100	<100	<1000	<100
Nitrobe	enzene	<10 µg/k		<100	<100	<100	<100	<1000	<100
Isopho	rone	<10	0 TM157	<100	<100	<100	<100	<1000	<100
Hexac	hloroethane	µq/ki <10	0 TM157	<100	<100	<100	<100	<1000	<100
	hlorocyclopentadie		0 TM157	<100	<100	<100	<200	<1000	<100
e Hexacl	hlorobutadiene	µq/k <10		<100	<100	<100	<100	<1000	<100
Hexad	hlorobenzene	μq/k <10		<100	<100	<100	<100	<1000	<100
n-Dioc	tyl phthalate	μq/ki <10		<100	<100	<100	<100	<1000	<100
	hyl phthalate	μq/k <10	q	<100	<100	<100	<100	<1000	<100
		µq/k	q						
Diethyl	I phthalate	<10 µg/k		<100	<100	<100	<100	<1000	<100
n-Dibu	ityl phthalate	<10 µg/k		<100	<100	<100	<100	<1000	<100
Dibenz	zofuran	<10 µg/k		<100	<100	<100	474	4750	<100
Carbaz	zole	<10	0 TM157	<100	<100	<100	627	4870	<100
Butylbo	enzyl phthalate	µq/k <10	0 TM157	<100	<100	<100	<100	<1000	<100
bis(2-E	Ethylhexyl) phthalat		0 TM157	<100	<100	<100	<100	<1000	<100
bis(2-C	Chloroethoxy)metha	µq/k an <10		<100	<100	<100	<100	<1000	<100
e bis(2-C	Chloroethyl)ether	μq/k <10		<100	<100	<100	<100	<1000	<100
Azobei		μq/ko <10	q	<100	<100	<100	<100	<1000	<100
		µq/k	q				<100	<1000	<100
	phenol	<10 µg/k	q	<100	<100	<100			
4-Nitro	baniline	<10 µg/k		<100	<100	<100	<100	<1000	<100
4-Meth	nylphenol	<10 µg/k		<100	<100	<100	<100	<1000	<100
4-Chlo	prophenylphenylethe		0 TM157	<100	<100	<100	<100	<1000	<100
4-Chlo	oroaniline	<10	0 TM157	<100	<100	<100	<100	<1000	<100
4-Chlo	pro-3-methylphenol		0 TM157	<100	<100	<100	<100	<1000	<100
4-Bron	nophenylphenylethe		0 TM157	<100	<100	<100	<100	<1000	<100
3-Nitro	aniline	µq/k <10		<100	<100	<100	<100	<1000	<100
	phenol	μq/ko <10	q	<100	<100	<100	<100	<1000	<100
	paniline	µq/k <10	q	<100	<100	<100	<100	<1000	<100
		µq/k	q						
	hylphenol	<10 µg/k	q	<100	<100	<100	<100	<1000	<100
	Trichlorobenzene	<10 µq/k	q	<100	<100	<100	<100	<1000	<100
2-Chlo	prophenol	<10 µg/k	0 TM157	<100	<100	<100	<100	<1000	<100
2,6-Dir	nitrotoluene	<10 µg/k	0 TM157	<100	<100	<100	<100	<1000	<100

b , /	ALcontrol La	boratories							Validated
SDG: Job:		110523-40 H_WARDELL_	SHF-37	Location: Customer:	Wardell Armstrong LLP	IALYSIS	Order Number: Report Number:	SH3068 135537	
		SH10534	ndo	Attention:	Mike Kelly		Superseded Report:	132894	
emi v	Olatile Organ Results Legend	lic Compou	Customer Sample R	TP 118	WS 103	WS 105	WS 107	WS 108	WS 110
M § diss.filt tot.unfilt * *	SO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Subcontracted test. K recovery of the surrogal check the efficiency of the results of individual comp samples aren't corrected fi ringger breach confirmed	te standard to method. The ounds within	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.70 Soil/Solid 20/05/2011 21/05/2011 110523-40 3515883	0.30 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515891	0.30 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515895	0.50 Soil/Solid 17/05/2011 21/05/2011 110523-40 3515899	0.40 Soii/Solid 17/05/2011 21/05/2011 110523-40 3515901	0.60 Soii/Solid 17/05/2011 21/05/2011 110523-40 3515903
Compon		LOD/Un	_				100		
2,4-Dim	ethylphenol	<100 µg/kg		<100	<100	<100	<100	<1000	<100
2,4-Dicł	nlorophenol	<100 µg/kg) TM157	<100	<100	<100	<100	<1000	<100
2,4,6-Ti	ichlorophenol	<100) TM157	<100	<100	<100	<100	<1000	<100
2,4,5-Ti	ichlorophenol	µq/kq <100) TM157	<100	<100	<100	<100	<1000	<100
1,4-Dicl	nlorobenzene	µq/kq <100) TM157	<100	<100	<100	<100	<1000	<100
1,3-Dict	nlorobenzene	µq/kq <100		<100	<100	<100	<100	<1000	<100
1,2-Dict	nlorobenzene	µq/kq <100		<100	<100	<100	<100	<1000	<100
2-Chlor	onaphthalene	µq/kq <100		<100	<100	<100	<100	<1000	<100
	/Inaphthalene	µq/kq <100		<100	124	126	578	3910	<100
	hthylene	µq/kq <100		<100	<100	<100	<100	<1000	<100
Acenap	-	µq/kq <100		<100	<100	<100	498	8450	<100
		µq/kq							
Anthrac		<100 µq/ka		<100	146	<100	951	10400	<100
	a)anthracene	<100 µq/kq		215	372	<100	1770	20300	<100
Benzo(I	o)fluoranthene	<100 µg/kg		205	307	<100	1300	13900	<100
Benzo(I	()fluoranthene	<100 µq/kq		181	288	<100	1450	14100	<100
Benzo(a	a)pyrene	<100 µg/kg		229	375	<100	1710	19400	<100
Benzo((g,h,i)perylene	<100 µg/kg		142	242	<100	751	9900	<100
Chryser	ne	<100 µg/kg) TM157	247	392	<100	1950	20500	<100
Fluoran	thene	<100 µg/kg) TM157	386	765	<100	4310	47100	<100
Fluoren	e	<100 µg/kg) TM157	<100	<100	<100	472	5920	<100
Indeno(1,2,3-cd)pyrene	<100) TM157	119	204	<100	705	8860	<100
Phenan	threne	µq/kq <100) TM157	286	637	147	4650	49000	131
Pyrene		µq/kq <100) TM157	361	663	<100	3780	40200	<100
Naphtha	alene	µq/kq <100) TM157	<100	159	<100	1110	7060	<100
Dibenzo	o(a,h)anthracene) TM157	<100	<100	<100	163	2030	<100
		juq/kq							
							1 1		

17:33:14 23/06/2011

CERTIFICATE OF ANALYSIS

				CE	RTI	FICATE OF A	NALYSIS				
SDG Job: Clier	I	110523-40 H_WARDELL SH10534	_SHF-37	Location: Customer: Attention:		ardell Armstrong LLI ke Kelly	P		Order Number: Report Number: Superseded Repor	SH3068 135537 ft: 132894	
	CWG (S)			,		no riony				102001	
	Results Legend		Customer Samp	le R TP 104		TP 105	TP 107		TP 110	TP 111	TP 111
# M § diss.filt tot.unfilt *	ISO17025 accredited. mCERTS accredited. Mon-conforming work. Aqueous / settled sample. Dissolved / Filtered sample. Subcontracted test. % recovery of the surrogat check the efficiency of the results of individual comp samples aren't corrected for Trigger breach confirmed	e standard to method. The bunds within	Depth Sample T Date Samj Date Recei SDG Lab Sample No AGS Refere	ype Soil/Solid bled 17/05/2011 ived 21/05/2011 Ref 110523-40 b.(s) 3515852		0.30 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515853	0.70 Soil/Solid 18/05/201 21/05/201 110523-40 3515860	1	1.00 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515863	0.70 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515866	1.20 Soil/Solid 18/05/2011 21/05/2011 110523-40 3515869
Compo		LOD/U				01			50	47	45
recove	Surrogate % erv**	%	5 TM089	9 29		31	66		52	17	45
GRO :	>C5-C12	<4 µg/k		9 49.5		<44	<44		<44	<44	<44
Methy (MTBE	I tertiary butyl ethe =)	r <5 µ	g/kg TM08	9 <5	#	<5 #	<5	#	<5 #	<5 #	<5 #
Benze	ne	<1 µq/k		9 <10	М	<10 M	<10	м	<10 M	<10 M	<10 M
Toluer	ne	<2 µ	g/kg TM08	9 <2	м	2.34 M	6.72	м	3.81 M	3.33 M	4.64 M
Ethylb	enzene	<3 µį	g/kg TM08	9 4.22	М	<3 M	20.2	м	7.62 M	7.77 M	16.2 M
m,p-X	ylene	<6 hö	g/kg TM08	9 8.43	М	<6 M	8.96	м	<6 M	<6 M	8.12 M
o-Xyle	ne	<3 µ	g/kg TM08	9 <3	М	<3 M	4.48	м	<3 M	<3 M	<3 M
	f detected mpo e by GC	μg/	kg TM08	8.43		none detected	13.4		none detected	none detected	8.12
sum o GC	f detected BTEX by	y µg/	kg TM089	9 12.7		2.34	40.3		11.4	11.1	29
Alipha	tics >C5-C6	<1 µq/k		9 <10		<10	<10		<10	<10	<10
Alipha	tics >C6-C8	<1 µq/k		9 14.8		<10	<10		<10	<10	<10
Alipha	tics >C8-C10	<1 µq/k		9 <10		<10	<10		<10	<10	<10
Alipha	tics >C10-C12	<1 µq/k		9 <10		<10	<10		<10	<10	<10
Alipha	tics >C12-C16	<10 µq/k		3 79300		33800	6260		10100	36900	14300
Alipha	tics >C16-C21	<10 µq/k		81900		48600	5310		16500	32400	15100
Alipha	tics >C21-C35	<10 µq/k		3 99300		240000	25800		49400	48400	41400
Alipha	tics >C35-C44	<10 µq/k		3 8330		36300	2380		4870	4850	4760
	Aliphatics >C12-C4	4 <10 μα/k	(q			359000	39700		80800	123000	75500
	atics >EC5-EC7	1> µq/ا	q			<10	<10		<10	<10	<10
	atics >EC7-EC8	<1 µq/k	(q			<10	<10		<10	<10	<10
	atics >EC8-EC10	1> µq/ا	(q			<10	32.5		12.7	14.4	27.8
Aroma	atics >EC10-EC12	1> µq/k		9 <10		<10	<10		<10	<10	<10
Aroma	atics >EC12-EC16	<10 µq/k		3 44800		25700	6970		25800	29900	9750
Aroma	atics >EC16-EC21	<10 µq/k		3 54200		32200	7140		18400	39200	21800
Aroma	atics >EC21-EC35	<10 µq/k		3 118000		151000	25000		48400	67100	57900
	atics >EC35-EC44	<10 µg/k	(q			44100	7340		11600	9710	16500
Aroma	atics >EC40-EC44	<10 µg/k	(q			15600	2990		4140	2530	6120
	Aromatics 2-EC44	<10 µg/k	(q			253000	46400		104000	146000	106000
Aroma	Aliphatics & atics >C5-C44	<10 µg/k	(q			612000	86200		185000	268000	182000
Total /	Aliphatics >C5-35	<10 µg/k	(q			323000	37400		75900	118000	70800
	Aromatics >C5-35	<10 µg/k		3 217000		209000	39100		92600	136000	89500
	Aliphatics & atics >C5-35	<10 µg/k		3 477000		531000	76500		169000	254000	160000
						-	-				

CERTIFICATE OF ANALYSIS

Validated

	110523-40		Location:	(Order Number:	SH3068	
	H_WARDELL_ SH10534	SHF-37		/ardell Armstrong LLF ike Kelly	,	Report Number: Superseded Repo	135537 rt: 132894	
	01110004		Attention.	ince recity		ouperseulu nepe	102034	
TPH CWG (S) Results Legend		Customer Sample R	TP 115	WS 103	WS 105	WS 108		
# ISO17025 accredited. M mCERTS accredited.								
 § Non-conforming work. aq Aqueous / settled sample. 		Depth (m)	0.30	0.30	0.30	0.40		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 19/05/2011	Soil/Solid 16/05/2011	Soil/Solid 16/05/2011	Soil/Solid 17/05/2011		
* Subcontracted test.		Date Received	21/05/2011	21/05/2011	21/05/2011	21/05/2011		
check the efficiency of the	method. The	SDG Ref Lab Sample No.(s)	110523-40 3515878	110523-40 3515891	110523-40 3515895	110523-40 3515901		
results of individual compo samples aren't corrected fo		AGS Reference						
(F) Trigger breach confirmed	LOD/Uni	its Method						
Component GRO Surrogate %	0/01	TM089	33	69	56	47		
recovery**								
GRO >C5-C12	<44 µq/kq		<44	48.3	828	189		
Methyl tertiary butyl ether (MTBE)	r <5 µg/	kg TM089	<5		<5 #	<5 #		
Benzene	<10 µq/kq	TM089	<10 M	<10 M	<10 M	<10 M		
Toluene	<2 µg/	kg TM089	<2 M	5.49 M	5.6 M	13.5 M		
Ethylbenzene	<3 µg/	kg TM089	<3 M	9.88 M	4.48 M	7.38 M		
m,p-Xylene	<6 µg/	kg TM089	<6 M	6.59 M	10.1 M	9.84 M		
o-Xylene	<3 µg/	kg TM089	<3 M	<3 M	5.6 M	4.92 M		
m,p,o-Xylene	µg/ko	g TM089			15.7	14.8		
sum of detected mpo xylene by GC	µg/kç) TM089	none detected	6.59				
BTEX, Total	µg/kç) TM089			25.8	35.7		
sum of detected BTEX by GC	y µg/kg	g TM089	none detected	22				
Aliphatics >C5-C6	<10 µg/kg	TM089	<10	<10	12.3	<10		
Aliphatics >C6-C8	<10 µg/kg	TM089	<10	<10	52.6	19.7		
Aliphatics >C8-C10	<10 µg/kg	TM089	<10	<10	113	25.8		
Aliphatics >C10-C12	<10 µg/kg	TM089	<10	11	328	48		
Aliphatics >C12-C16	<100 µq/kq		31600	7510	11900	9170		
Aliphatics >C16-C21	<100 µg/kg		60200	9600	24100	14100		
Aliphatics >C21-C35	<100 µq/kq		77200	33600	87500	115000		
Aliphatics >C35-C44	<100 µq/kq		14200	4020	10900	25300		
Total Aliphatics >C12-C4	4 <100 µq/kq		183000	54700	134000	164000		
Aromatics >EC5-EC7	<10 µq/kq		<10	<10	<10	<10		
Aromatics >EC7-EC8	<10 µq/kq	TM089	<10	<10	<10	13.5		
Aromatics >EC8-EC10	<10 µq/kq	TM089	<10	20.9	96.3	39.4		
Aromatics >EC10-EC12	<10 µq/kq	TM089	<10	<10	218	32		
Aromatics >EC12-EC16	<100 µq/kq		36200	8430	6670	58000		
Aromatics >EC16-EC21	<100 µq/kq		52900	11300	13400	247000		
Aromatics >EC21-EC35	<100 µg/kg		88500	33100	44900	517000		
Aromatics >EC35-EC44	<100 µq/kq	TM173	26700	8560	7270	125000		
Aromatics >EC40-EC44	<100 µg/kg	TM173	9820	2670	1440	36400		
Total Aromatics >EC12-EC44	<100 µg/kg	TM173	204000	61400	72200	947000		
Total Aliphatics &	<100	TM173	388000	116000	207000	1110000		
Aromatics >C5-C44 Total Aliphatics >C5-35	µq/kq <100		169000	50700	124000	139000		
Total Aromatics >C5-35	µq/kq <100		178000	52900	65300	822000		
Total Aliphatics &	µq/kq <100		347000	104000	189000	961000		
Aromatics >C5-35	µq/kq							

Aromatics >C5-35

µq/kq

CERTIFICATE OF ANALYSIS

			CER	TIFICATE O	F A	NALYSIS				
UNC RE() Description Description <thdescription< th=""> <thdescription< th=""> <t< th=""><th>H_WARD</th><th>DELL_SHF-37</th><th>Customer:</th><th></th><th>) LLP</th><th></th><th></th><th>Report Number:</th><th>135537</th><th></th></t<></thdescription<></thdescription<>	H_WARD	DELL_SHF-37	Customer:) LLP			Report Number:	135537	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Image: Normal state state and the state sta	Results Legend	Customer Sample R	TP 104	TP 105		TP 107		TP 110	TP 111	TP 111
	RTS accredited. conforming work. ous / settled sample. Jundified sample. / unfittered sample. ontracted test. overy of the surrogate standard to k the efficiency of the method. The ts of individual compounds within les aren't corrected for the recovery	Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s)	Soil/Solid 17/05/2011 21/05/2011 110523-40 3515852	Soil/Solid 18/05/2011 21/05/2011 110523-40		Soil/Solid 18/05/2011 21/05/2011 110523-40		Soil/Solid 18/05/2011 21/05/2011 110523-40	Soil/Solid 18/05/2011 21/05/2011 110523-40	1.20 Soli/Solid 18/05/2011 21/05/2011 110523-40 3515869
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L		1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	oromethane**	% TM116	101	84.8		101		101		104 §
	8**	% TM116	93.5	109		100		92.6	98.8	99.9 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	iorobenzene**	% TM116	133	119		116		103		110 §
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	luoromethane	<4 µg/kg TM116	<4		м	<4	м			<80 §
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hane	<7 µg/kg TM116	<7		#	<7	#			<140 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ride		<10	#	#		#			<200 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hane		<13	м	м	<13	м			<260 §
	ane		<14		м	<14	м			<280
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				м	м		м	M	§	<120 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		µq/kq		#	#		#	#	§	<200 §
				м	м		м	м	§	<140 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		µq/kq	11.1		#	<10	#	#		<200 §
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	tiary Butyl Ether		<11		м	<11	м			<220 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dichloroethene		<11		М	<11	м			<220 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	roethane	<8 µg/kg TM116	<8		м	<8	м			<160 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	chloroethene	<5 µg/kg TM116	<5		м	<5	м			<100 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		µq/kq		м	м		м	M	§	<240 §
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		µq/kq		м	м		м	м	§	<280 §
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10 0		М	м		м	М	§	<160 §
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10 0		М	м		м	M	§	<140 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		µq/kq		м	м		м	M	§	<220 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	achloride	µq/kq		м	м		м	м		<280
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			<5	м	м		м	M		<100 §
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				М	м		м	М	§	<180 §
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				м	м		м	М	§	<180 §
Bromodichloromethane <7 µg/kg TM116 <7 <7 <7 <7 <140 Cis-1-3-Dichloropropene <14		µq/kq		м	м		м	M	§	<240 §
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		10 0		M	М		м	M	§	<180 §
μq/kq M <td>loromethane</td> <td>10 0</td> <td></td> <td>M</td> <td>м</td> <td></td> <td>м</td> <td>M</td> <td></td> <td><140 §</td>	loromethane	10 0		M	м		м	M		<140 §
Iteration M	hloropropene	µq/kq		м	м		м	M	§	<280 §
μq/kq μq/kq \$ 1.1.2-Trichloroethane <10				м	м		м	M	§	<100 §
μg/kg M M M M §		µq/kq							§	<280 §
		µq/kq		м	м		м	M	§	<200 §
1.3-Dichloropropane <7 µg/kg ТМ116 <7 <7 <7 12.3 <140 # # # # # # §		10 0		#	#		#	#	§	<140 §
Tetrachloroethene <5 μg/kg TM116 79.9 12.5 <5 12.6 <100 M M M M M M §		10 0		М	м		м	M	§	<100 §
Dibromochloromethane <13 TM116 <13 <13 <13 <13 <260 µg/kg M M M M §	loromethane		<13		м	<13	м			<260 §

CERTIFICATE OF ANALYSIS

Client Reference:	SH10534		Attention:	Mil	ke Kelly				Superseded Repor	t: 132894	
VOC MS (S)											
Results Legend		Customer Sample R	TP 104		TP 105		TP 107		TP 110	TP 111	TP 111
# ISO17025 accredited. M mCERTS accredited.											
§ Non-conforming work. aq Aqueous / settled sample.		Depth (m)	0.50		0.30		0.70		1.00	0.70	1.20
diss.filt Dissolved / filtered sample		Sample Type	Soil/Solid		Soil/Solid		Soil/Solid		Soil/Solid	Soil/Solid	Soil/Solid
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled Date Received	17/05/2011 21/05/2011		18/05/2011 21/05/2011		18/05/2011 21/05/2011		18/05/2011 21/05/2011	18/05/2011 21/05/2011	18/05/2011 21/05/2011
** % recovery of the surrogat		SDG Ref	110523-40		110523-40		110523-40		110523-40	110523-40	110523-40
check the efficiency of the results of individual comp		Lab Sample No.(s)	3515852		3515853		3515860		3515863	3515866	3515869
samples aren't corrected for (F) Trigger breach confirmed	or the recovery	AGS Reference									
Component	LOD/U	nits Method									
1.2-Dibromoethane	<1	2 TM116	<12		<12		<12		<12	<240	<240
	µq/k	.q		М		М		М	М	§	§
Chlorobenzene	<5 µç	g/kg TM116	<5		<5		<5		10.6	<100	<100
				М		М		м	M	§	§
1.1.1.2-Tetrachloroethan			<10		<10		<10		<10	<200	<200
Ethylbenzene	μα/k <4 μο		12.1	М	5.83	М	28.4	М	M 22.2	<u></u> <80	<u></u> <80
Lutyibenzene	~4 þý	g/kg IIwiTiO	12.1	м	0.00	м	20.4	м	22.2 M	S.	S.
p/m-Xylene	<14	4 TM116	33.2		<14		<14		28	<280	<280
· · ·	µg/k	.q		#		#		#	#	§	ş
o-Xylene	<1	D TM116	17.1		<10		<10		<10	<200	<200
	µq/k			М		М		М	M	§	§
Styrene	<1		<10		<10		20.7		13.8	<200	<200
Descriptions	µq/k		-10	М	- 10	М	-10	М	M	§	§
Bromoform	<1		<10	м	<10	м	<10	м	<10 M	<200 §	<200 §
Isopropylbenzene	μα/k <5 μς		<5	IVI	<5	IVI	<5	IVI	7.59	<100	<100
130propyiberizerie	10 PS	, ng i mirio	~~	м	-0	м	~~	м	M	ş	§
1.1.2.2-Tetrachloroethan	ie <1	D TM116	<10		<10		<10		<10	<200	<200
	µq/k	.q		#		#		#	#	ş	ş
1.2.3-Trichloropropane	<1	7 TM116	<17		<17		<17		<17	<340	<340
	µq/k			М		М		М	M	§	§
Bromobenzene	<1		<10		<10		<10		<10	<200	<200
Desculture	µq/k		.4.4	М	-44	М	- 44	М	M	§	§
Propylbenzene	<1 µg/k		<11	м	<11	м	<11	м	<11 M	<220 §	<220 §
2-Chlorotoluene	µu/۸ <9 µر		<9	IVI	<9	IVI	<9	IVI	<9	<180	<180
	-0 ps	, ng 11110		м		м		м	~ М	ş	§
1.3.5-Trimethylbenzene	<8 µç	j/kg TM116	<8		<8		<8		<8	<160	<160
				#		#		#	#	§	§
4-Chlorotoluene	<1		<12		<12		<12		<12	<240	<240
	µq/k		10	М	10	М	10	м	M	§.	§
tert-Butylbenzene	<1		<12	#	<12	#	<12	#	<12 #	<240 §	<240 §
1.2.4-Trimethylbenzene	μα/k <9 μς		<9	#	<9	#	<9	#	<9 #	<180	<180
1.2.4 minearyibenzene	-0 PS	, ng i i i i i i i i i i i i i i i i i i	~~	#		#	~~	#		ş	ş
sec-Butylbenzene	<1	D TM116	<10		<10		<10	_	14.9	<200	<200
	µq/k			М		М		Μ	M	§	§
4-Isopropyltoluene	<1		<11		<11		<11		<11	<220	<220
	µq/k			М		М		М	M	§	<u>§</u>
1.3-Dichlorobenzene	<6 µį	g/kg TM116	<6	м	<6	м	<6	м	<6 M	<120 §	<120
1.4-Dichlorobenzene	<5 µg	g/kg TM116	<5	IVI	<5	IVI	<5	IVI	<5	<100	<u></u> <100
1.4-Dichlorobenzene	<0 P	ang mining		м	~~	м	~0	м	M	s loo	§
n-Butylbenzene	<1	D TM116	<10		<10		<10		14.1	<200	<200
	µg/k	.q		М		М		М	м	§	§
1.2-Dichlorobenzene	<1		<12		<12		<12		<12	<240	<240
	µq/k			М		М		М	M	§	§
1.2-Dibromo-3-chloropro			<14		<14		<14		<14	<280	<280
ne Tert-amyl methyl ether	µq/k <1		<15	М	<15	М	<15	М	M <15	<300	<u></u> <300
ren-annyr meuryr eurer	µg/k		<15		\$15		10		10	<000 §	§
1.2.4-Trichlorobenzene	<6 µç		<6		<6		<6		<6	<120	<120
	- 13	,	_	#	_	#	_	#	#	§	§
Hexachlorobutadiene	<1	2 TM116	<12		<12		<12		<12	<240	<240
	µq/k									ş	§
Naphthalene	<1		<13		<13		<13		81.6	<260	<260
1.0.2 Trichlershonzono	µq/k		-6	М	-6	М	-6	М	M	\$ <100	§
1.2.3-Trichlorobenzene	<6 µç	g/kg TM116	<6	м	<6	м	<6	м	<6 M	<120 §	<120 §
				141		191		TV1	IVI	8	

CERTIFICATE OF ANALYSIS

Validated

U					CEF	RTI	FICATE OF A	NA	LYSIS				
SDG Job:		110523-40 H_WARD		6HF-37	Location: Customer:		ardell Armstrong LLP	5			Order Number: Report Number:	SH3068 135537	
		SH10534			Attention:	Mi	ke Kelly				Superseded Repor	t: 132894	
VOC MS (S) Results Legend Customer Sample R							WS 103		WS 105		WS 108		
# M § aq diss.filt tot.unfilt * *	ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Subcontracted test. % recovery of the surrogal check the efficiency of the results of individual comp samples aren't corrected fi Trigger breach confirmed	te standard to method. The ounds within		Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	TP 115 0.30 Soii/Solid 19/05/2011 21/05/2011 110523-40 3515878		0.30 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515891		0.30 Soil/Solid 16/05/2011 21/05/2011 110523-40 3515895		0.40 Soii/Solid 17/05/2011 21/05/2011 110523-40 3515901		
Compo			DD/Uni										
Dibror	nofluoromethane**	í I	%	TM116	108	ş	93		95.5		101		
Toluer	ne-d8**		%	TM116	99.8	ş	105		98.1		106		
	nofluorobenzene**		%	TM116	107	§	108		151		127		
	rodifluoromethane		:4 µg/ł	-	<80	§	<4 M		<4	м	<8 M		
	methane	<	:7 µg/ł	-	<140	§	<7 #		<7	#	<14 #		
Vinyl (Chloride		<10 µq/kq	TM116	<200	§	<10 #		<10	#	<20 #		
	methane		<13 µq/kq	TM116	<260	ş	<13 M		<13	м	<26 M		
	ethane		<14 µq/kq	TM116	<280	§	<14 M		<14	м	<28 M		
	rofluorormethane	<	:6 µg/I		<120	§	<6 M		<6	м	<12 M		
1.1-Di	chloroethene		<10 µq/kq	TM116	<200	§	<10 #		<10	#	<20 #		
Carbo	n Disulphide	<	:7 µg/ł	(g TM116	<140	§	<7 M		26.5	м	56 M		
	romethane		<10 µq/kq	TM116	<200	ş	<10 #		<10	#	<20 #		
Methy	Tertiary Butyl Eth		<11 µq/kq	TM116	<220	ş	<11 M		<11	м	<22 M		
trans-	I-2-Dichloroethene		<11 µq/kq	TM116	<220	§	<11 M		<11	м	<22 M		
	chloroethane		:8 µg/ł	-	<160	§	<8 M		<8	м	<16 M		
cis-1-2	2-Dichloroethene	<	:5 µg/I		<100	§	<5 M		<5	м	<10 M		
	chloropropane		<12 µq/kq	TM116	<240	ş	<12 M		<12	м	<24 M		
	chloromethane		<14 µq/kq	TM116	<280	§	<14 M		<14	м	<28 M		
Chloro			:8 µg/ŀ		<160	§	<8 M		<8	м	<16 M		
	Frichloroethane	<	:7 µg/ł		<140	ş	<7 M		<7	м	<14 M		
	chloropropene		<11 µq/kq	TM116	<220	§	<11 M		<11	м	<22 M		
	ntetrachloride		<14 µq/kq	TM116	<280	ş	<14 M		<14	м	<28 M		
1.2-Di	chloroethane		:5 µg/ł		<100	§	<5 M		<5	м	<10 M		
Benze			:9 µg/ł	-	<180	§	<9 M		<9	м	<18 M		
	roethene	<	:9 µg/ł		<180	§	<9 M		<9	м	<18 M		
	chloropropane		<12 µq/kq	TM116	<240	§	<12 M		<12	м	<24 M		
	nomethane		:9 µg/ł		<180	ş	<9 M		<9	м	<18 M		
Bromo	dichloromethane	<	:7 µg/ł		<140	§	<7 M		<7	м	<14 M		
	-Dichloropropene		<14 µq/kq	TM116	<280	§	<14 M		<14	м	<28 M		
Toluer			:5 µg/ł	-	<100	ş	7.66 M		12.8	м	31.4 M		
	I-3-Dichloroproper		<14 µq/kq	TM116	<280	§	<14		<14		<28		
	Frichloroethane		<10 µq/kq	TM116	<200	ş	<10 M		<10	м	<20 M		
	chloropropane		:7 µg/ł	-	<140	§	<7 #		<7	#	<14 #		
	hloroethene	<	:5 µg/I		<100	ş	<5 M		<5	м	<10 M		
Dibror	nochloromethane		<13 µq/kq	TM116	<260	§	<13 M		<13	м	<26 M		

CERTIFICATE OF ANALYSIS

Validated

VOC MS (S)

VOC MS (S)								
	Results Legend 017025 accredited.		Customer Sample R	TP 115	WS 103	WS 105	WS 108	
M m	CERTS accredited.							
aq A	queous / settled sample.		Depth (m)	0.30 Soil/Solid	0.30 Soil/Solid	0.30 Soil/Solid	0.40 Soil/Solid	
	issolved / filtered sample. otal / unfiltered sample.		Sample Type Date Sampled	19/05/2011	16/05/2011	16/05/2011	17/05/2011	
	ubcontracted test. recovery of the surrogate standar	rd to	Date Received	21/05/2011	21/05/2011 110523-40	21/05/2011	21/05/2011	
d	heck the efficiency of the method. Soults of individual compounds wit	The	SDG Ref Lab Sample No.(s)	110523-40 3515878	3515891	110523-40 3515895	110523-40 3515901	
S	amples aren't corrected for the rec		AGS Reference					
(F) Tr Compone	rigger breach confirmed	LOD/Unit	s Method					
	omoethane	<12	TM116	<240	<12	<12	<24	
		µq/kq		§	М	М	M	
Chlorobe	enzene	<5 µg/k	g TM116	<100	<5 M	<5 M	<10 M	
1112-1	Tetrachloroethane	<10	TM116	<u></u> <200	<10	<10	<20	
	cuacinoroculario	µg/kg		§	м	M	M	
Ethylben	nzene	<4 µg/k	g TM116	<80	9.78	11.8	11.3	
n/m Vula		-14	TM116	§	M <14	M 17.7	M	
p/m-Xyle	ene	<14 µg/kg	11/1116	<280 §	<14 #	17.7	<28 #	
o-Xylene	9	<10	TM116	<200	<10	<10	<20	
		µq/kq		§	М	М	M	
Styrene		<10	TM116	<200 §	<10 M	<10 M	<20 M	
Bromofo	orm	µq/kq <10	TM116	<200	M <10	M <10	<20	
		µq/kq		\$200 §	м	M	M	
Isopropy	lbenzene	<5 µg/k	g TM116	<100	<5	<5	<10	
44007		-10	Th440	§	M	M	M	I
1.1.2.2-1	Tetrachloroethane	<10 µq/kq	TM116	<200 §	<10 #	<10 #	<20 #	
1.2.3-Tri	ichloropropane	<17	TM116	<340	π <17	<17	<34	
		µq/kq		§	М	М	М	
Bromobe	enzene	<10	TM116	<200	<10	<10	<20	
Dropylbe	202000	µq/kq <11	TM116	§ <220	M <11	M <11	M <22	
Propylbe	enzene	µg/kg	TIVITIO	<220 §	м	M	<22 M	
2-Chloro	otoluene	<9 µg/k	g TM116	<180	<9	<9	<18	
				§	М	M	M	
1.3.5-Tri	imethylbenzene	<8 µg/k	g TM116	<160 §	<8 #	<8 #	<16 #	
4-Chloro	otoluene	<12	TM116	<240	<12	<12	<24	
		µq/kq		§	М	м	M	
tert-Buty	Ibenzene	<12	TM116	<240	<12	<12	<24	
124-Tri	imethylbenzene	µq/kq <9 µg/k	a TM116	<u></u> <180	# <9	# 21.8	# <18	
1.2.4-111	incuryibenzene	~5 µg/k	ig nimitio	s iou	~5 #	21.0	<10 #	
sec-Buty	/lbenzene	<10	TM116	<200	<10	<10	<20	
		µq/kq		§	M	M	M	
4-Isopro	pyltoluene	<11 µg/kg	TM116	<220 §	<11 M	<11 M	<22 M	
1.3-Dich	lorobenzene	<6 µg/kg	a TM116	<120	<6	<6	<12	
				§	М	М	M	
1.4-Dich	lorobenzene	<5 µg/k	g TM116	<100	<5	<5	<10	
n-Butylb	enzene	<10	TM116	<u></u> <200	M <10	M <10	M <20	
		µq/kq		~200 §	чю М	чю М	<20 M	
1.2-Dich	lorobenzene	<12	TM116	<240	<12	<12	<24	
4.0.5"		µq/kq	Thus	§	M	M	M	I
1.2-Dibro	omo-3-chloropropa	<14 µg/kg	TM116	<280 §	<14 M	<14 M	<28 M	
	yl methyl ether	<15	TM116	<300	<15	<15	<30	
	-	µq/kq		§				
1.2.4-Tri	ichlorobenzene	<6 µg/k	g TM116	<120	<6	<6	<12	
Hevachi	orobutadiene	<12	TM116	<u></u> <240	# <12	# <12	# <24	
I ICAGUIII		<12 µg/kg	TWITE	<240 §	×12	512	~24	
Naphtha	llene	<13	TM116	<260	737	<13	564	
		µq/kq		§	М	M	M	
1.2.3-Tri	ichlorobenzene	<6 µg/k	g TM116	<120 §	<6 M	<6 M	<12 M	
—					IVI	IVI	М	I
—								I
L								

CERTIFICATE OF ANALYSIS

Validated

SDG: 110523-40 Location: Order Number: SH3068 Job: H_WARDELL_SHF-37 Wardell Armstrong LLP 135537 Customer: Report Number: **Client Reference:** SH10534 Attention: Mike Kelly Superseded Report: 132894

Asbestos Identification

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receiverd SDG Original Sample Method Number	TP 103 NS Z 0.40 SOLID 17/05/2011 00:00:00 23/05/2011 11:03:10 110523-40 3,515,847 TM048	28/05/11	Tomasz Pawlikowski	cement	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected

			ATE OF ANA					
SDG: 110523-40 Job: H_WARDELL Client Reference: SH10534	L_SHF-37 C	ocation: ustomer: Wardell ttention: Mike Ke	Armstrong LLP	R	rder Number: eport Number: uperseded Report:	SH3068 135537 132894		
		CEN 10:1 S	TAGE BATCI	I TEST				
WAC ANALYTICAL RESU	JLTS					REF : B	S EN 12457	
Client Reference			Site Location					
Mass Sample taken (kg)	0.104		Moisture Conte	ent Ratio (%)	15.8			
Mass of dry sample (kg)	0.175		Dry Matter Cor	itent Ratio (%)	86.4			
Particle Size <4mm	>95%							
Case								
SDG	110523-40							
ab Sample Number(s)	3515843							
Sampled Date	17-May-2011							
Customer Sample Ref.	TP 101							
Depth (m)	0.60							
Solid Waste Analysis	Result		-					
otal Organic Carbon (%)	1.87		-		-	-	-	
oss on Ignition (%)	-				-	-	-	
um of BTEX (mg/kg) um of 7 PCBs (mg/kg)	-				-	-	-	
fineral Oil (mg/kg)	-				-	-	-	
PAH Sum of 17 (mg/kg)	-				-	-	-	
H (pH Units)	8.13				-	-	-	
NC to pH 6 (mol/kg) NC to pH 4 (mol/kg)	-				-	-	-	
Eluate Analysis			A2 10:1 cor	c ⁿ leached (mg/kg)	using		ues for compliance leaching test BS EN 12457-3 at L/S 10 l/kg	
Arsenic	Result	Limit of Detection		Limit of Detection				
Barium	0.000431	<0.00012	0.00431	<0.0012	-	-		
Cadmium	<0.0001	< 0.0001	< 0.001	< 0.001		-		
Chromium	0.00476	<0.00022	0.0476	< 0.0022	-	-	-	
Copper	0.00134	<0.00085	0.0134	<0.0085	-	-	-	
Aercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001		-	-	
lolybdenum lickel	- 0.000827	- <0.00015	- 0.00827	- <0.0015	-	-	-	
ead	0.000827	<0.00013	0.00827	<0.0013		-	-	
Intimony	-	-	-	-	-	-	-	
Selenium	<0.00039	<0.00039	<0.0039	< 0.0039	-	-	-	
	0.00221	<0.00041	0.0221	< 0.0041		-	-	
Chloride				-	-	-	-	
Sulphate (soluble)						-		
otal Dissolved Solids	-	-	-	-	-	-	-	
otal Monohydric Phenols (W)	-	-	-	-	-	-	-	
issolved Organic Carbon		-	-	-	-	-	-	
each Test Information								

Date Prepared	15-Jun-2011
pH (pH Units)	7.12
Conductivity (µS/cm)	101.00
Temperature (°C)	22.30
Volume Leachant (Litres)	0.886
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Meerts Certification does not apply to leachates

23/06/2011 17:33:37

17:33:14 23/06/2011

ALcontrol Lat			CEF	RTIFIC	ATE OF ANAI	LYSIS			
Job: H	10523-40 I_WARDELL_SHF H10534	-37	Location: Customer: Attention:	Wardell Mike Ke	Armstrong LLP	F	Order Number: Report Number: Superseded Report:	SH3068 135537 132894	
			CEN	10:1 S	TAGE BATCH	H TEST			
VAC ANALYTICA		S						REF	: BS EN 12457
Client Reference		-			Site Location				
Mass Sample taken ((ka)	0.104			Moisture Conte	opt Batio (%)	15.8		
Mass of dry sample (,	0.175			Dry Matter Con				
Particle Size <4mm		>95%			Dry Matter Con		00.4		
Case									
SDG		110523-40							
ab Sample Number	(s)	3515843						1	
Sampled Date		17-May-201	1						
Customer Sample Re		TP 101							
Depth (m)		0.60							
Solid Waste Analysis	3	Result							
otal Organic Carbon (%)		1.87					-	-	-
oss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg)		-					-	-	-
Sum of 7 PCBs (mg/kg) /lineral Oil (mg/kg)		-					-	-	-
PAH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units)		8.13					-	-	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)		-					-	-	-
Elucto Anchroio		C2 Conc ⁿ	in 10:1 eluate	e (mg/l)	A2 10:1 con	ic ⁿ leached (mg/kg)	Limit valu	es for compli	ance leaching test
Eluate Analysis		Result	Limit o	of Detection	Result	Limit of Detecti		S EN 12457-	3 at L/S 10 l/kg
PAH Spec MS - Aqueous ((W)								
Acenaphthalene by GCMS		<0.0001 0.0000178).0001 000015	<u><0.001</u> 0.000178	<0.001 <0.00015	-	-	-
Acenaphthylene by GCMS		< 0.0000178		000013	< 0.000178	<0.00013		-	
Fluoranthene by GCMS		< 0.000017		000017	< 0.00017	< 0.00017	-	-	-
Anthracene by GCMS		<0.000015		000015	<0.00015	<0.00015	-	-	-
Phenanthrene by GCMS		<0.000022		000022	<0.00022	<0.00022	-	-	-
Iuorene by GCMS		< 0.000014		000014	< 0.00014	< 0.00014	-	-	-
Pyrene by GCMS		<0.000013 <0.000015		000013 000015	<0.00013 <0.00015	<0.00013 <0.00015		-	
Benz(a)anthracene by GCN	ИS	< 0.000013		000015	<0.00013	<0.00013		-	-
Benzo(b)fluoranthene by G		<0.000023		000023	< 0.00023	< 0.00023	-	-	-
Benzo(k)fluoranthene by G	CMS	<0.000027	<0.	000027	<0.00027	<0.00027	-	-	-
Benzo(a)pyrene by GCMS	00110	<0.00009		000009	<0.00009	<0.00009	-	-	-
Dibenzo(ah)anthracene by Benzo(ghi)perylene by GCI		< 0.000016		000016	<0.00016	< 0.00016	-	-	-
ndeno(123cd)pyrene by G		<0.000016 <0.000014		000016 000014	<0.00016	<0.00016		-	-
PAH 16 EPA Total by GCN		0.0000178		<0	0.000178	<0.00014		-	-
Leach Test Informat	ion		1		I				
ate Prepared		15-Jun-2011							
H (pH Units)		7.12							
Conductivity (µS/cm)		101.00							
Temperature (°C)		22.30							

Volume of Eluate VE1 (Litres)		
Solid Results are expressed on a dry weight basis	after correction for mo	isture content where applic

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

22.30

0.886

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

Temperature (°C)

Volume Leachant (Litres)

SDG: 110523-40 Job: H_WARDELL Client Reference: SH10534 WAC ANALYTICAL RESU Client Reference Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case SDG	_SHF-37 Cu At	ention: Mike Kelly CEN 10:1 ST		Rep Supe	er Number: ort Number: erseded Report:	SH3068 135537 132894	
Client Reference Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case	0.098 0.175	CEN 10:1 ST	AGE BATCH	TEST			
Client Reference Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case	0.098 0.175		Site Location				
lass Sample taken (kg) lass of dry sample (kg) article Size <4mm case	0.175		Site Location			REF : BS	EN 12457
/lass of dry sample (kg) Particle Size <4mm Case	0.175						
Particle Size <4mm Case			Moisture Conte	nt Ratio (%)	8.51		
Case	>95%		Dry Matter Con	tent Ratio (%)	92.2		
DG							
000	110523-40						
.ab Sample Number(s)	3515852					I	
Sampled Date	17-May-2011						
Customer Sample Ref.	TP 104						
Depth (m)	0.50						
Solid Waste Analysis	Result						
otal Organic Carbon (%)	-				-	-	-
oss on Ignition (%)	-				-	-	-
um of BTEX (mg/kg) um of 7 PCBs (mg/kg)	0.0127				-	-	-
lineral Oil (mg/kg)	-				-	-	-
AH Sum of 17 (mg/kg)	-				-	-	-
H (pH Units) NC to pH 6 (mol/kg)	7.90				-	-	-
NC to pH 4 (mol/kg)	-	-			-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 2	l0:1 eluate (mg/l)	A2 10:1 cond	ⁿ leached (mg/kg)		es for compliance le S EN 12457-3 at L/S	
Vraenia	Result	Limit of Detection	Result	Limit of Detection			-
krsenic Barium	0.000608	<0.00012	0.00608	<0.0012	-	-	-
Cadmium	<0.0001	<0.0001	<0.001	<0.001	-	-	-
Chromium	0.00271	<0.00022	0.0271	<0.0022	-	-	-
Copper	0.00465	<0.00085	0.0465	<0.0085	-	-	-
lercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001 -	<0.0001	-	-	-
lickel	0.000684	<0.00015	0.00684	< 0.0015	-		-
ead	0.000599	<0.00002	0.00599	< 0.0002	-	-	-
eau			-	-			
ntimony	-	-			-	-	-
ntimony elenium	<0.00039	<0.00039	< 0.0039	<0.0039	-	-	-
ntimony ielenium inc	<0.00039 0.00613	<0.00039 <0.00041	0.0613	<0.0039 <0.0041	-	-	-
eau Antimony Selenium Cinc Chloride	<0.00039	<0.00039		<0.0039	-	-	-
Intimony Belenium inc Chloride Iuoride Buphate (soluble)	<0.00039 0.00613 -	<0.00039 <0.00041 -	0.0613	<0.0039 <0.0041 -	- - -		- - -
ntimony elenium inc hloride luoride	<0.00039 0.00613 - -	<0.00039 <0.00041 - -	0.0613 - -	<0.0039 <0.0041 - -	- - - -	- - - -	

Date Prepared	15-Jun-2011
pH (pH Units)	7.69
Conductivity (µS/cm)	78.90
Temperature (°C)	22.40
Volume Leachant (Litres)	0.892
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Meerts Certification does not apply to leachates

23/06/2011 17:33:37

ALcontrol Lal			CERT	FICA	TE OF ANAL	YSIS			Validated
Job: H	10523-40 1_WARDELL_SHF 6H10534	-37		/ardell / ike Kell	Armstrong LLP	R	rder Number: eport Number: uperseded Report:	SH3068 135537 132894	
VAC ANALYTIC	AL RESULT	S						REF	: BS EN 12457
lient Reference					Site Location				
Aass Sample taken	(ka)	0.098			Moisture Conte	nt Ratio (%)	8.51		
Aass of dry sample	()	0.175			Dry Matter Con		92.2		
Particle Size <4mm	(0)	>95%			Dry matter oon		02.2		
Case									
SDG		110523-40							
ab Sample Number	(s)	3515852							I
Sampled Date		17-May-2011							
Customer Sample R		TP 104							
Depth (m)		0.50							
Solid Waste Analysi	S	Result							
otal Organic Carbon (%)		-			I		-	-	-
oss on Ignition (%)		-					-	-	-
um of BTEX (mg/kg) um of 7 PCBs (mg/kg)		0.0127					-	-	-
fineral Oil (mg/kg)		-					-	-	-
AH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units)		7.90					-	-	-
NC to pH 6 (mol/kg) NC to pH 4 (mol/kg)		-					-	-	-
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluate (m	g/l)	A2 10:1 con	c ⁿ leached (mg/kg)			ance leaching test
-		Result	Limit of De	tection	Result	Limit of Detectio		IS EN 12457-	3 at L/S 10 l/kg
PAH Spec MS - Aqueous	(W)								
laphthalene by GCMS		<0.0001 <0.000015	<0.000		<0.001 <0.00015	<0.001 <0.00015	-	-	-
cenaphthylene by GCMS		< 0.000011	<0.0000		<0.00010	<0.00010	-	-	-
luoranthene by GCMS		<0.000017	<0.000		<0.00017	<0.00017	-	-	-
Inthracene by GCMS		<0.000015	<0.0000		<0.00015	< 0.00015		-	-
Phenanthrene by GCMS		< 0.000022	<0.0000		<0.00022	< 0.00022		-	-
Chrysene by GCMS		<0.000014 <0.000013	<0.0000		<0.00014 <0.00013	<0.00014 <0.00013		-	
Pyrene by GCMS		< 0.000015	<0.0000		<0.00015	< 0.00015	-	-	-
Benz(a)anthracene by GC		<0.000017	<0.000		<0.00017	<0.00017	-	-	-
Benzo(b)fluoranthene by G		<0.000023	<0.0000		<0.00023	<0.00023		-	-
Benzo(k)fluoranthene by G Benzo(a)pyrene by GCMS		<0.000027	<0.0000		<0.00027	< 0.00027	-	-	-
Dibenzo(a)pyrene by GCMS		<0.000009 <0.000016	<0.0000		<0.00009 <0.00016	<0.00009 <0.00016		-	
Benzo(ghi)perylene by GC		< 0.000016	<0.0000		<0.00016	< 0.00016			
ndeno(123cd)pyrene by G		< 0.000014	<0.0000		< 0.00014	< 0.00014	-	-	-
AH 16 EPA Total by GCN	ЛS	0	<0		0	<0	-	-	-
each Test Informat	ion								
ate Prepared		15-Jun-2011							
H (pH Units) onductivity (µS/cm)		7.69 78.90							
Temperature (°C)		78.90							

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

22.40

0.892

Mcerts Certification does not apply to leachates

Volume of Eluate VE1 (Litres)

23/06/2011 17:33:37 17:33:14 23/06/2011

Temperature (°C)

Volume Leachant (Litres)

Mass of dry sample (kg) (C Particle Size <4mm 2 Case SDG 2 Lab Sample Number(s) 2 Sampled Date 2 Customer Sample Ref. 7 Depth (m) 2 Solid Waste Analysis Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Vineral Oil (mg/kg) PAH Sum of 17 (mg/kg) DH (pH Units)	-37 Cu Att	ention: Mike Kelly CEN 10:1 ST	AGE BATCH Site Location Moisture Conte	Report Supers	Number: t Number: seded Report: 21.2 82.5	SH3068 135537 132894 REF : BS	5 EN 12457
Client Reference Mass Sample taken (kg) (Mass of dry sample (kg) (Particle Size <4mm 2 Case SDG 2 Lab Sample Number(s) 2 Sampled Date 2 Customer Sample Ref. 2 Depth (m) 2 Solid Waste Analysis Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Vineral Oil (mg/kg) PAH Sum of 17 (mg/kg) De (pH Units)	0.109 0.175 >95% 110523-40 3515869 18-May-2011 TP 111 1.20 Result - - 0.029 -	S	Site Location	ent Ratio (%)		REF : BS	EN 12457
Client Reference Mass Sample taken (kg) (f) Mass of dry sample (kg) (f) Particle Size <4mm (f) Case (f) SDG (f) Cab Sample Number(s) (f) Sampled Date (f) Customer Sample Ref. (f) Depth (m) (f) Solid Waste Analysis (f) otal Organic Carbon (%) (f) oss on Ignition (%) (f) um of T PCBs (mg/kg) (f) um of 17 (mg/kg) (f) AH Sum of 17 (mg/kg) (f) H (pH Units) (f)	0.109 0.175 >95% 110523-40 3515869 18-May-2011 TP 111 1.20 Result - - 0.029 -	Ν	Noisture Conte			REF : B	EN 12457
Mass Sample taken (kg) O Mass of dry sample (kg) O Particle Size <4mm	0.175 >95% 110523-40 3515869 18-May-2011 TP 111 1.20 Result - - 0.029 -	Ν	Noisture Conte				
Mass of dry sample (kg) (C Particle Size <4mm 2 Case SDG 2 Lab Sample Number(s) (C Sampled Date 2 Customer Sample Ref. 2 Depth (m) 2 Solid Waste Analysis 2 Solid Waste Analysis 2 Solid Organic Carbon (%) 2 Soss on Ignition (%) 2 Sum of BTEX (mg/kg) 2 Sum of 7 PCBs (mg/kg) 2 Sum of 17 (mg/kg) 2 H Sum of 17 (mg/kg) 2 H (pH Units) 2	0.175 >95% 110523-40 3515869 18-May-2011 TP 111 1.20 Result - - 0.029 -						
Particle Size <4mm Case Case SDG Cab Sample Number(s) Sampled Date Customer Sample Ref. Depth (m) Solid Waste Analysis Total Organic Carbon (%) Sous on Ignition (%) Sour of BTEX (mg/kg) Sour of 7 PCBs (mg/kg) Alineral Oil (mg/kg) PAH Sum of 17 (mg/kg) H (pH Units)	>95% 110523-40 3515869 18-May-2011 TP 111 1.20 Result - - - 0.029 -		Dry Matter Con	itent Ratio (%)	82.5		
Case SDG // Lab Sample Number(s) // Sampled Date // Customer Sample Ref. // Depth (m) // Solid Waste Analysis Fotal Organic Carbon (%) Loss on Ignition (%) Sour of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) H (pH Units)	110523-40 3515869 18-May-2011 TP 111 1.20 Result - - 0.029 -						
SDG A Lab Sample Number(s) C Sampled Date A Customer Sample Ref. C Depth (m) A Solid Waste Analysis A Fotal Organic Carbon (%) B Sour of BTEX (mg/kg) B Jineral Oil (mg/kg) A PAH Sum of 17 (mg/kg) H H (pH Units) A	3515869 18-May-2011 TP 111 1.20 Result - - - 0.029 -						
Lab Sample Number(s) C Sampled Date C Sustomer Sample Ref. C Depth (m) C Solid Waste Analysis C Solid Organic Carbon (%) C Depth (m) C Solid Organic Carbon (%) C Dum of BTEX (mg/kg) C Lineral Oil (mg/kg) C AH Sum of 17 (mg/kg) C H (pH Units) C	3515869 18-May-2011 TP 111 1.20 Result - - - 0.029 -						
Sampled Date Customer Sample Ref. Customer Sample Ref. Customer Sample Ref. Depth (m) Customer Sample Ref. Solid Waste Analysis Customer Sample Ref. Solid Organic Carbon (%) Customer Sample Ref. Solid Waste Analysis	18-May-2011 TP 111 1.20 Result - - 0.029 -						
Customer Sample Ref. Image: Customer Sample Ref. Depth (m) Image: Customer Sample Ref. Solid Waste Analysis Image: Customer Sample Ref. Solid Organic Carbon (%) Image: Customer Sample Ref. Image: Customer Sample Ref. Image: Customer Sample Ref.	TP 111 1.20 Result - - - 0.029 -						
Depth (m) Solid Waste Analysis otal Organic Carbon (%) oss on Ignition (%) um of BTEX (mg/kg) um of 7 PCBs (mg/kg) lineral Oil (mg/kg) AH Sum of 17 (mg/kg) H (pH Units)	1.20 Result - 0.029 -						
Solid Waste Analysis Total Organic Carbon (%) oss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) H (pH Units)	Result - 0.029 -						
Total Organic Carbon (%) Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) PAH Sum of 17 (mg/kg) H (pH Units)	- - 0.029 -			-			
oss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) /lineral Oil (mg/kg) PAH Sum of 17 (mg/kg) IH (pH Units)	- 0.029 -						
um of BTEX (mg/kg) um of 7 PCBs (mg/kg) lineral Oil (mg/kg) 'AH Sum of 17 (mg/kg) H (pH Units)	0.029			_	-	-	-
um of 7 PCBs (mg/kg) lineral Oil (mg/kg) AH Sum of 17 (mg/kg) H (pH Units)	-			-	-	-	-
AH Sum of 17 (mg/kg) H (pH Units)	_				-	-	-
H (pH Units)	-			_	-	-	-
	7.76			_	-	-	-
NC to pH 6 (mol/kg)	-				-	-	-
NC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A2 10:1 con	c ⁿ leached (mg/kg)		ues for compliance le BS EN 12457-3 at L/	
Arsenic	Result 0.0044	Limit of Detection <0.00012	Result 0.044	<pre>Limit of Detection <0.0012</pre>	-	-	-
Barium	-	-	-	-	-	-	-
Cadmium	<0.0001	<0.0001	<0.001	<0.001	-	-	-
Chromium Copper	0.00185	<0.00022 <0.00085	0.0185	<0.0022 <0.0085	-	-	-
Mercury Dissolved (CVAF)	<0.00001	<0.00003	<0.0001	<0.0003	-	-	-
lolybdenum	-	-	-	-	-	-	-
lickel ead	0.00147	< 0.00015	0.0147	<0.0015	-	-	-
ntimony	0.000223	<0.00002	0.00223	<0.0002	-	-	-
elenium	0.000657	<0.00039	0.00657	<0.0039	-	-	-
inc Chloride	0.00109	<0.00041	0.0109	<0.0041	-	-	-
luoride	-	-	-		-	-	-
sulphate (soluble)	57.2	<2	572	<20	-	-	-
	01.2		-				
otal Dissolved Solids otal Monohydric Phenols (W)	- 0	- <0	0	- <0	-	-	-

Date Prepared	
pH (pH Units)	
Conductivity (µS/cm)	

,	
Conductivity (µS/cm)	248.00
Temperature (°C)	22.30
Volume Leachant (Litres)	0.881
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

7.76

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

ALcontrol La	5012101165		CEF	RTIFIC	ATE OF ANAL	YSIS			Validated
Job:	110523-40 H_WARDELL_SH SH10534	F-37	Location: Customer: Attention:	Wardell Mike Ke	Armstrong LLP	Re	der Number: port Number: perseded Report:	SH3068 135537 132894	
VAC ANALYTIC	AL RESULT	S						REF	: BS EN 12457
lient Reference		•			Site Location				
lass Sample taken	(ka)	0.109			Moisture Conte	nt Patio (%)	21.2		
Mass of dry sample	,	0.175			Dry Matter Con		82.5		
Particle Size <4mm	(kg)	>95%			Dry Matter Con		02.0		
Case									
SDG		110523-40							
_ab Sample Number	r(s)	3515869						1	
Sampled Date	.(0)	18-May-201	1						
Customer Sample R	of	TP 111							
Depth (m)	.ei.	1.20							
/	le.	Result					•		
Solid Waste Analysi	15	Result							
otal Organic Carbon (%)		-					-	-	-
oss on Ignition (%) Sum of BTEX (mg/kg)		- 0.029					-	-	-
Sum of 7 PCBs (mg/kg)		-					-	-	-
lineral Oil (mg/kg)		-					-	-	-
AH Sum of 17 (mg/kg)		- 7.76					-	-	-
H (pH Units) NC to pH 6 (mol/kg)		-					-	-	-
ANC to pH 4 (mol/kg)		-					-	-	-
Eluate Analysis			in 10:1 eluate			c ⁿ leached (mg/kg)	using E		ance leaching test 3 at L/S 10 l/kg
Hexavalent Chromium		Result <0.03		f Detection 0.03	Result <0.3	Limit of Detection <0.3	-		
bH		7.8	- 1	0.001	78	< 0.01	-	-	-
Sulphide		<0.01	<	0.01	<0.1	<0.1	-	-	-
otal Cyanide (W)		< 0.05		0.05	<0.5	< 0.5	-	-	-
Free Cyanide (W) Phenol by HPLC (W)		<0.05 <0.002		0.05).002	<0.5	<0.5	-	-	-
hiocyanate (W)		<0.002		0.002	<0.02	<0.02	-	-	
Boron		0.0254		.0094	0.254	< 0.094	-	-	-
AH Spec MS - Aqueous	(W)								
laphthalene by GCMS		<0.0001		.0001	<0.001	<0.001	-	-	-
cenaphthene by GCMS	2	<0.000015		000015	<0.00015 <0.00011	<0.00015	-	-	-
luoranthene by GCMS	5	<0.000011 <0.000017)00011)00017	<0.00017	<0.00011 <0.00017	-	-	-
Anthracene by GCMS		< 0.000015		000015	< 0.00015	< 0.00017	-	-	-
henanthrene by GCMS		<0.000022	<0.0	00022	<0.00022	<0.00022	-	-	-
luorene by GCMS		<0.000014		000014	<0.00014	<0.00014	-	-	-
Chrysene by GCMS		< 0.000013		00013	< 0.00013	< 0.00013	-	-	-
Pyrene by GCMS Benz(a)anthracene by GC	MS	<0.000015 <0.000017)00015)00017	<0.00015 <0.00017	<0.00015 <0.00017	-	-	-
Benzo(b)fluoranthene by (< 0.000023		000023	< 0.00023	< 0.00023	-	-	-
Benzo(k)fluoranthene by C	GCMS	<0.000027		000027	<0.00027	<0.00027	-	-	-
Benzo(a)pyrene by GCMS		<0.000009		00009	<0.00009	<0.00009	-	-	-
bibenzo(ah)anthracene by	GCMS	<0.000016	<0.0	000016	<0.00016	<0.00016	-	-	-
each Test Informa	tion								
ate Prepared		15-Jun-2011							
H (pH Units)		7.76							
Conductivity (µS/cm)		248.00							
Temperature (°C) /olume Leachant (Litres)		22.30							

Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.881

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

Volume Leachant (Litres)

ALcontrol La			CEF	RTIFIC	ATE OF ANA	ALYSIS			Validated
Job:	110523-40 H_WARDELL_SH SH10534	F-37	Location: Customer: Attention:	Wardell . Mike Kel	Armstrong LLP	F	Order Number: Report Number: Superseded Report:	SH3068 135537 132894	
VAC ANALYTIC		.e						DEE	: BS EN 12457
	AL RESULI	3			O ¹ / ₁ I ¹ / ₁			REF	. DS EN 1245/
Client Reference	4 \	0.400			Site Location		04.0		
Mass Sample taken		0.109				tent Ratio (%)	21.2		
Mass of dry sample	(kg)	0.175			Dry Matter Co	ontent Ratio (%)	82.5		
Particle Size <4mm		>95%							
Case									
SDG		110523-40							
_ab Sample Number	r(s)	3515869							
Sampled Date		18-May-2011	1						
Customer Sample R	ef.	TP 111							
Depth (m)		1.20							
Solid Waste Analysi	ŝ	Result							
	~				•				
otal Organic Carbon (%)		-					-	-	-
Sum of BTEX (mg/kg)		0.029					-	-	-
Sum of 7 PCBs (mg/kg)		-					-	-	-
/lineral Oil (mg/kg)		-					-	-	-
PAH Sum of 17 (mg/kg) H (pH Units)		7.76					-	-	-
NC to pH 6 (mol/kg)		-					-	-	-
ANC to pH 4 (mol/kg)		-			-		-	-	-
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluate	e (mg/l)	A2 10:1 c	onc ⁿ leached (mg/kg)			ance leaching test 3 at L/S 10 l/kg
•		Result	Limit o	of Detection	Result	Limit of Detecti		5 EN 12457 .	at 2/5 10 1/ kg
PAH Spec MS - Aqueous	(W)								
Benzo(ghi)perylene by GC		< 0.000016		000016	< 0.00016	< 0.00016	-	-	-
ndeno(123cd)pyrene by C PAH 16 EPA Total by GCI		<0.000014 0	<0.0	000014 <0	<0.00014 0	<0.00014	-	-	-
TPH CWG (W)	wice	0		~0	0		-	-	-
Surrogate Recovery		-		<0	-	<0	-	-	-
GRO TOT (C5-C12)		< 0.05		0.05	<0.5	<0.5	-	-	-
Aliphatics C5-C6		< 0.01		0.01	<0.1	<0.1	-	-	-
Aliphatics >C6-C8 Aliphatics >C8-C10		<0.01 <0.01		0.01	<u><0.1</u> <0.1	<0.1		-	-
Aliphatics >C10-C12		<0.01		0.01	<0.1	<0.1		-	
Aliphatics >C12-C16		< 0.01		0.01	<0.1	<0.1	-	-	-
Aliphatics >C16-C21		<0.01		0.01	<0.1	<0.1	-	-	-
Aliphatics >C21-C35		<0.01		0.01	<0.1	<0.1	-	-	-
otal Aliphatics >C12-C35)	< 0.01		0.01	<0.1	<0.1	-	-	-
Aromatics >C7-C8		<0.01 <0.01		0.01	<u><0.1</u> <0.1	<u><0.1</u> <0.1	-	-	-
ATBE GC-FID		< 0.003		0.003	< 0.03	< 0.03	-	-	-
Aromatics >EC8 -EC10		<0.01	<	0.01	<0.1	<0.1	-	-	-
Aromatics >EC10-EC12		<0.01		0.01	<0.1	<0.1	-	-	-
Aromatics >EC12-EC16		< 0.01		0.01	<0.1	<0.1	-	-	-
Aromatics >EC16-EC21 Aromatics >EC21-EC35		<0.01 <0.01		0.01	<u><0.1</u> <0.1	<u><0.1</u> <0.1	-	-	-
Total Aromatics >EC12-E	C35	<0.01		0.01	<0.1	<0.1	-	-	-
each Test Informat	tion								
Date Prepared		15-Jun-2011							
H (pH Units)		7.76							
Conductivity (µS/cm)		248.00							
Temperature (°C) /olume Leachant (Litres)		22.30							

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.881

Mcerts Certification does not apply to leachates

Volume of Eluate VE1 (Litres)

23/06/2011 17:33:37

Volume Leachant (Litres)

ALcontrol La			CEF	RTIFIC	ATE OF ANAL	YSIS			Validated
Job:	110523-40 H_WARDELL_SH	IF-37	Location: Customer:		Armstrong LLP	Rep	er Number: oort Number:	SH3068 135537	
Client Reference:	SH10534		Attention:	Mike Kel	•		erseded Report:	132894	
			CEN	10:1 5	TAGE BATCH	IESI			
VAC ANALYTIC	AL RESULI	ſS						REF	: BS EN 12457
Client Reference					Site Location				
Mass Sample taken	(kg)	0.109			Moisture Conte	nt Ratio (%)	21.2		
Mass of dry sample	(kg)	0.175			Dry Matter Cont	ent Ratio (%)	82.5		
Particle Size <4mm		>95%							
Case									
SDG		110523-40							
_ab Sample Number	r(s)	3515869							
Sampled Date		18-May-201	1						
Customer Sample R	ef.	TP 111							
Depth (m)		1.20							
Solid Waste Analysi	S	Result							
otal Organic Carbon (%)		-					-	-	-
oss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)		0.029					-	-	
/lineral Oil (mg/kg)		-					-	-	-
PAH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units)		7.76					-	-	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)		-					-	-	-
are to pri i (iio#iig)		1							
Eluate Analysis		C2 Conc	in 10:1 eluate	e (mg/l)	A2 10:1 conc	ⁿ leached (mg/kg)			nce leaching test at L/S 10 l/kg
TPH CWG (W)		Result	Limit o	f Detection	Result	Limit of Detection			
Benzene by GC		<0.007	<(0.007	<0.07	<0.07	-	-	-
Toluene by GC		< 0.004		0.004	< 0.04	< 0.04	-	-	-
Ethylbenzene by GC		<0.005		0.005	<0.05	<0.05	-	-	-
n & p Xylene by GC		< 0.008		0.008	<0.08	< 0.08	-	-	-
Sum m&p and o Xylene by	/ GC	<0.003 0		0.003 <0	<0.03 0	<0.03 <0	-	-	
Sum of BTEX by GC	,	0		<0	0	<0	-	-	
TPH (Total Aliphatics + To	otal	< 0.01		0.01	<0.1	<0.1	-	-	-
Aromatics) >C5-C35									
each Test Informat Date Prepared H (pH Units)	tion	15-Jun-2011 7.76							
Conductivity (µS/cm)		248.00							
Temperature (°C)		240.00							

Temperature (°C) 22.30 Volume Leachant (Litres) 0.881 Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

Mass of dry sample (kg)0.1Particle Size <4mm>9Case110SDG110Lab Sample Number(s)35Sampled Date19	7 CL At 103 175 15% 0523-40 15878 -May-2011 2 115	tention: Mike Kelly CEN 10:1 ST		Repo Super	Number: rt Number: rseded Report: 14.3 87.5	SH3068 135537 132894 REF : BS	EN 1245
WAC ANALYTICAL RESULTSClient ReferenceMass Sample taken (kg)0.1Mass of dry sample (kg)0.1Particle Size <4mm>9:Case110SDG110Lab Sample Number(s)35:Sampled Date19:Customer Sample Ref.TPDepth (m)0.3	103 175 95% 0523-40 15878 I-May-2011 2 115	CEN 10:1 ST	FAGE BATCH Site Location Moisture Conte	I TEST	14.3		EN 1245
Client Reference Mass Sample taken (kg) 0.1 Mass of dry sample (kg) 0.1 Particle Size <4mm >9: Case 50G 110 Lab Sample Number(s) 35: Sampled Date 19: Customer Sample Ref. TP Depth (m) 0.3	175 95% 0523-40 15878 -May-2011 2 115		Site Location Moisture Conte	ent Ratio (%)		REF : BS	EN 12457
Client Reference Mass Sample taken (kg) 0.1 Mass of dry sample (kg) 0.1 Varticle Size <4mm	175 95% 0523-40 15878 -May-2011 2 115		Moisture Conte			REF : BS	EN 12457
Mass Sample taken (kg) 0.1 Mass of dry sample (kg) 0.1 Particle Size <4mm	175 95% 0523-40 15878 -May-2011 2 115		Moisture Conte				
Mass of dry sample (kg) 0.1 Particle Size <4mm	175 95% 0523-40 15878 -May-2011 2 115						
Particle Size <4mm	0523-40 15878 -May-2011 2 115		Dry Matter Con	tent Ratio (%)	87.5		
Case SDG 110 Lab Sample Number(s) 35 Sampled Date 19 Customer Sample Ref. TP Depth (m) 0.3	0523-40 15878 I-May-2011 P 115						
SDG110Lab Sample Number(s)35Sampled Date19Customer Sample Ref.TPDepth (m)0.3	15878 -May-2011 2 115	-					
SDG110Lab Sample Number(s)35Sampled Date19Customer Sample Ref.TPDepth (m)0.3	15878 -May-2011 2 115						
Lab Sample Number(s)35Sampled Date19-Customer Sample Ref.TPDepth (m)0.3	15878 -May-2011 2 115			1			
Sampled Date19-Customer Sample Ref.TPDepth (m)0.3	-May-2011 ? 115						
Customer Sample Ref.TPDepth (m)0.3	P 115						
Depth (m) 0.3							
,	<()						
Solid Waste Analysis	50						
	Result						
otal Organic Carbon (%)	-				-	-	-
oss on Ignition (%)	-				-	-	-
	none detected				-	-	-
um of 7 PCBs (mg/kg) fineral Oil (mg/kg)	-				-	-	-
AH Sum of 17 (mg/kg)	-				-	-	-
H (pH Units)	7.94				-	-	-
NC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C2 Conc ⁿ in	10:1 eluate (mg/l)	A2 10:1 con	c ⁿ leached (mg/kg)		es for compliance lea S EN 12457-3 at L/S	-
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.00334	<0.00012	0.0334	<0.0012	-	-	-
Barium		-	-	-	-	-	-
Chromium	<0.0001 0.00333	<0.0001 <0.00022	<0.001 0.0333	<0.001 <0.0022	-	-	-
Copper	0.00333	<0.00022	0.0333	<0.0022	-	-	-
/ercury Dissolved (CVAF)	0.0000142	<0.00000	0.000142	< 0.0001	-	-	-
		-					
Nolybdenum	-	-	-	-	-	-	-
	- 0.00109	- <0.00015	- 0.0109	- <0.0015	-	-	-
Nolybdenum lickel lead	0.00109 0.000323	<0.00015 <0.00002	0.0109 0.00323	<0.0015 <0.0002			
lickel	0.00109 0.000323 -	<0.00015 <0.00002 -	0.0109 0.00323 -	<0.0015 <0.0002 -			-
lickel	0.00109 0.000323 - 0.000493	<0.00015 <0.00002 - <0.00039	0.0109 0.00323 - 0.00493	<0.0015 <0.0002 - <0.0039	- - - -	- - - -	- - - -
lickel ead statement of the second statement of the se	0.00109 0.000323 - 0.000493 0.00125	<0.00015 <0.00002 - <0.00039 <0.00041	0.0109 0.00323 - 0.00493 0.0125	<0.0015 <0.0002 - <0.0039 <0.0041	- - - - -	- - - - -	- - - -
Vickel vi	0.00109 0.000323 - 0.000493 0.00125 -	<0.00015 <0.00002 - <0.00039 <0.00041 -	0.0109 0.00323 - 0.00493 0.0125 -	<0.0015 <0.0002 - <0.0039 <0.0041 -	- - - - - -	- - - - - - -	
lickel ead ntimony selenium fünc	0.00109 0.000323 - 0.000493 0.00125 - -	<0.00015 <0.00002 - <0.00039 <0.00041 - -	0.0109 0.00323 - 0.00493 0.0125 - - -	<0.0015 <0.0002 - <0.0039 <0.0041 - -	- - - - -	- - - - -	- - - -
lickel ead edd edd edd edd edd edd edd edd edd	0.00109 0.000323 - 0.000493 0.00125 -	<0.00015 <0.00002 - <0.00039 <0.00041 -	0.0109 0.00323 - 0.00493 0.0125 -	<0.0015 <0.0002 - <0.0039 <0.0041 -	- - - - - - - -	- - - - - - - - -	- - - - - - -
lickel ead	0.00109 0.000323 - 0.000493 0.00125 - - 58.1	<0.00015 <0.00002 - <0.00039 <0.00041 - - - <2	0.0109 0.00323 - 0.00493 0.0125 - - 581	<0.0015 <0.0002 - <0.0039 <0.0041 - - <20	- - - - - - - -	- - - - - - - -	- - - - - - - - -

Date Prepared	15-Jun-2011
pH (pH Units)	7.45
Conductivity (µS/cm)	220.00
Temperature (°C)	22.30
Volume Leachant (Litres)	0.887
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

ALcontrol La	501010163		CEF	RTIFIC	ATE OF ANAL	YSIS			Validated
Job:	110523-40 H_WARDELL_SH SH10534	F-37	Location: Customer: Attention:	Wardell Mike Kel	Armstrong LLP	Re	der Number: port Number: perseded Report:	SH3068 135537 132894	
			CEN	10:1 S	TAGE BATCH	I TEST			
VAC ANALYTIC	AL RESULT	S						REF	: BS EN 12457
Client Reference		•			Site Location				
Mass Sample taken	(ka)	0.103			Moisture Conte	nt Potio (%)	14.3		
-	,								
Mass of dry sample	(Kg)	0.175			Dry Matter Con	tent Ratio (%)	87.5		
Particle Size <4mm		>95%							
Case									
SDG		110523-40							
ab Sample Number	r(s)	3515878						1	
Sampled Date		19-May-2011							
Customer Sample R	ef.	TP 115							
Depth (m)		0.30							
Colid Wests Analysi		Result							
Solid Waste Analysi	3	Acoun							
otal Organic Carbon (%)		-					-	-	-
oss on Ignition (%) Sum of BTEX (mg/kg)		none detected					-	-	-
um of 7 PCBs (mg/kg)		-					-	-	-
lineral Oil (mg/kg)		-					-	-	-
AH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units) NC to pH 6 (mol/kg)		7.94					-	-	-
NC to pH 4 (mol/kg)		-					-	-	-
Eluate Analysis		C2 Conc ⁿ							ance leaching test 3 at L/S 10 l/kg
		Result		f Detection		Limit of Detection		5 EN 12457-	5 at 1/5 10 1/kg
Hexavalent Chromium		<0.03 7.7		0.03	<0.3	<0.3	-	-	
Sulphide		<0.01		0.001 0.01	<0.1	<0.01	-	-	
otal Cyanide (W)		< 0.05		0.05	<0.5	<0.5	-	-	-
ree Cyanide (W)		< 0.05		0.05	<0.5	<0.5	-	-	-
Phenol by HPLC (W)		< 0.002		0.002	<0.02	<0.02	-	-	-
hiocyanate (W)		<0.05 0.0215		0.05 .0094	<0.5 0.215	<0.5	-	-	-
AH Spec MS - Aqueous	(W)	0.0213		.0034	0.215	-0.0 0 -	_		
laphthalene by GCMS		<0.0001	<0	.0001	<0.001	<0.001	-	-	-
cenaphthene by GCMS		<0.000015		000015	<0.00015	<0.00015	-	-	-
cenaphthylene by GCMS luoranthene by GCMS	3	< 0.000011		000011	< 0.00011	< 0.00011	-	-	-
Inthracene by GCMS		<0.000017 <0.000015		000017	<0.00017 <0.00015	<0.00017 <0.00015	-	-	
henanthrene by GCMS		<0.000013		000013	<0.00013	<0.00013	-	-	
luorene by GCMS		<0.000014	<0.0	000014	<0.00014	<0.00014	-	-	-
hrysene by GCMS		< 0.000013		000013	<0.00013	<0.00013	-	-	-
yrene by GCMS enz(a)anthracene by GC	MC	< 0.000015		000015	< 0.00015	<0.00015	-	-	-
enzo(b)fluoranthene by GC		<0.000017 <0.000023		000017 000023	<0.00017 <0.00023	<0.00017 <0.00023	-	-	
enzo(k)fluoranthene by C		<0.000023		000023	<0.00023	<0.00023	-	-	-
enzo(a)pyrene by GCMS	3	<0.00009		00009	<0.00009	<0.00009	-	-	-
ibenzo(ah)anthracene by	GCMS	<0.000016	<0.(000016	<0.00016	<0.00016	-	-	-
each Test Informat	tion								
ate Prepared		15-Jun-2011							
H (pH Units)		7.45							
Conductivity (µS/cm)		220.00							
Femperature (°C)		22.30							

Temperature (°C) 22.30 Volume Leachant (Litres) 0.887 Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

ALcontrol La	aburaturies		CEF	RTIFIC/	ATE O	F ANAI	_YSIS			Validated
Job:	110523-40 H_WARDELL_SH SH10534	F-37	Location: Customer: Attention:	Wardell Mike Ke	Armstron	g LLP	R	der Number: port Number: perseded Report:	SH3068 135537 132894	
					•	BATCH		.porocourt incporti	102001	
		_								
VAC ANALYTIC	AL RESULT	S							REF	: BS EN 12457
Client Reference						ocation				
Mass Sample taken	(kg)	0.103			Moistu	ire Conte	ent Ratio (%)	14.3		
Mass of dry sample	(kg)	0.175			Dry Ma	atter Cor	tent Ratio (%)	87.5		
Particle Size <4mm		>95%								
Case										
SDG		110523-40								
_ab Sample Numbe	r(s)	3515878								
Sampled Date	()	19-May-2011								
Customer Sample F	Ref.	TP 115								
Depth (m)		0.30								
Solid Waste Analys	is	Result								
otal Organic Carbon (%)		_								
Loss on Ignition (%)		-						-	-	-
Sum of BTEX (mg/kg)		none detected						-	-	-
Sum of 7 PCBs (mg/kg)		-						-	-	-
/lineral Oil (mg/kg) PAH Sum of 17 (mg/kg)		-						-	-	-
H (pH Units)		7.94						-	-	-
NC to pH 6 (mol/kg)		-						-	-	-
ANC to pH 4 (mol/kg)		-			I			-	-	-
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluate	(mg/l)	A 2	10:1 con	c ⁿ leached (mg/kg)		-	ance leaching test 8 at L/S 10 l/kg
PAH Spec MS - Aqueous	(141)	Result	Limit o	f Detection	F	Result	Limit of Detectio	n		
Benzo(ghi)perylene by G		<0.000016	<0.0	00016	~0	.00016	<0.00016			
ndeno(123cd)pyrene by		< 0.000014		000014		0.00014	< 0.00014	-	-	-
PAH 16 EPA Total by GC	MS	0		<0		0	<0	-	-	-
TPH CWG (W)					1					
Surrogate Recovery GRO TOT (C5-C12)		- <0.05		<0 0.05		- <0.5	<0	-	-	-
Aliphatics C5-C6		<0.03		0.03		<0.1	<0.1	-	-	-
Aliphatics >C6-C8		<0.01		0.01		<0.1	<0.1	-	-	-
liphatics >C8-C10		<0.01		0.01		<0.1	<0.1	-	-	-
Niphatics >C10-C12 Niphatics >C12-C16		< 0.01		0.01	-	<0.1	<0.1	-	-	-
Aliphatics >C16-C21		<0.01 <0.01		0.01 0.01		<0.1 <0.1	<0.1	-	-	-
Aliphatics >C21-C35		<0.01		0.01		<0.1	<0.1		-	-
otal Aliphatics >C12-C3	5	<0.01		0.01	-	<0.1	<0.1	-	-	-
Aromatics C6-C7		<0.01		0.01		<0.1	<0.1	-	-	-
Aromatics >C7-C8		<0.01		0.01		<0.1	<0.1		-	-
ATBE GC-FID Aromatics >EC8 -EC10		< 0.003		0.003	_	< 0.03	< 0.03	-	-	-
Aromatics >EC10-EC12		<0.01 <0.01		0.01 0.01		<u><0.1</u> <0.1	<0.1	-	-	
Aromatics >EC12-EC16		<0.01		0.01		<0.1	<0.1	-	-	-
Aromatics >EC16-EC21		<0.01		0.01	_	<0.1	<0.1	-	-	-
Aromatics >EC21-EC35		<0.01		0.01		<0.1	<0.1	-	-	-
otal Aromatics >EC12-E	C35	<0.01	<	0.01		<0.1	<0.1	-	-	-
.each Test Informa	tion									
Date Prepared		15-Jun-2011								
H (pH Units)		7.45								
Conductivity (µS/cm)		220.00								
Femperature (°C)		22.30								

Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.887

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

Volume Leachant (Litres)

	aboratories		CEF	RTIFICA	ATE OF ANAL	YSIS			Validated
SDG: Job:	110523-40 H_WARDELL_S	SHF-37	Location: Customer:		Armstrong LLP	Rep	ler Number: oort Number:	SH3068 135537	
Client Reference:	SH10534		Attention:	Mike Kel	-		perseded Report:	132894	
			CEN	10:1 S	TAGE BATCH	ITEST			
VAC ANALYTI	CAL RESUL	TS						REF	: BS EN 12457
lient Reference					Site Location				
Mass Sample take	n (kg)	0.103			Moisture Conte	nt Ratio (%)	14.3		
Mass of dry sampl	le (kg)	0.175			Dry Matter Con	tent Ratio (%)	87.5		
Particle Size <4mr		>95%							
Case									
SDG		110523-40							
ab Sample Numb	er(s)	3515878							
Sampled Date		19-May-201	1						
Customer Sample	Ref.	TP 115							
Depth (m)	-	0.30							
Solid Waste Analy	eie	Result							
Total Organic Carbon (%)					•			 -	
Loss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg)		none detected					-	-	-
Sum of 7 PCBs (mg/kg)		-					-	-	-
/lineral Oil (mg/kg) PAH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units)		7.94					-	-	-
ANC to pH 6 (mol/kg)		-					-	-	-
ANC to pH 4 (mol/kg)		-					-	-	-
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluate	e (mg/l)	A2 10:1 cond	c ⁿ leached (mg/kg)			nce leaching test at L/S 10 l/kg
		Result	Limit c	of Detection	Result	Limit of Detection			,, y
TPH CWG (W)		0.007			0.07				
Benzene by GC Foluene by GC		<0.007 <0.004		0.007 0.004	<0.07 <0.04	<0.07 <0.04	-	-	
Ethylbenzene by GC		< 0.005		0.005	<0.05	<0.05	-	-	-
m & p Xylene by GC		<0.008		0.008	<0.08	<0.08	-	-	-
Xylene by GC		< 0.003		0.003	< 0.03	<0.03	-	-	-
Sum m&p and o Xylene Sum of BTEX by GC	by GC	0		<0	0	<0	-	-	-
FPH (Total Aliphatics +	Total	0		<0 :0.01	0<0.1	<0 <0.1		-	-
Aromatics) >C5-C35									
Leach Test Inform	ation	15-Jun-2011							
H (pH Units) Conductivity (µS/cm)		7.45							
Conductivity (µS/cm)		220.00							

Conductivity (µS/cm)	220.00
Temperature (°C)	22.30
Volume Leachant (Litres)	0.887
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

	110522.40				ATE OF ANAL			6110000		
SDG: Job: Client Reference:	110523-40 H_WARDELL_SHI SH10534	F-37	Location: Customer: Attention:	Wardell A Mike Kell	Armstrong LLP	R	rder Number: eport Number: uperseded Report:	SH3068 135537 132894		
			CEN	10:1 ST		ITEST				
	AL RESULT	S						REF :	BS EN	12457
lient Reference					Site Location					
Mass Sample taker	n (ka)	0.109			Moisture Conte	nt Ratio (%)	21.7			
Mass of dry sample		0.175			Dry Matter Con		82.2			
Particle Size <4mm		>95%								
Case										
SDG		110523-40								
ab Sample Numbe	er(s)	3515883								
Sampled Date		20-May-201	1							
Customer Sample	Ref.	TP 118								
Depth (m)		0.70								
Solid Waste Analys	sis	Result								
otal Organic Carbon (%)		-			•		-	-		-
oss on Ignition (%) Sum of BTEX (mg/kg)		-					-	-		-
sum of 7 PCBs (mg/kg)		-					-	-		-
lineral Oil (mg/kg)		-					-	-		-
AH Sum of 17 (mg/kg)		-					-	-		-
H (pH Units) NC to pH 6 (mol/kg)		8.23					-	-		-
NC to pH 4 (mol/kg)		-					-	-		-
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluate	e (mg/l)	A2 10:1 cond	c ⁿ leached (mg/kg)		alues for compliance leaching test g BS EN 12457-3 at L/S 10 l/kg		
,		Result	Limit o	f Detection	Result	Limit of Detection		55 EN 12457-5		ky
Arsenic Barium		0.000466	<0.	00012	0.00466	< 0.0012		-		-
Cadmium		< 0.0001	<0	.0001	- <0.001	< 0.001		-		-
Chromium		0.0026		00022	0.026	< 0.0022	-	-		-
Copper		0.00158		00085	0.0158	<0.0085	-	-		-
lercury Dissolved (CVA lolybdenum	F)	<0.00001	<0.	00001	<0.0001	<0.0001	-	-		-
lickel		- 0.0015	<0	- 00015	- 0.015	- <0.0015	-	-		-
ead		0.000661		00002	0.00661	< 0.0002	-	-		-
ntimony		-		-	-	-	-	-		-
Selenium		< 0.00039		00039	<0.0039	<0.0039	-	-		-
Zinc Chloride		0.00346	<0.	00041	0.0346	<0.0041	-	-		-
luoride		-		-	-	-	-	-		-
Sulphate (soluble)		-		-	-	-	-	-		-
otal Dissolved Solids		-		-	-	-	-	-		-
otal Monohydric Pheno Dissolved Organic Carbo		-		-	-	-	-	-		-
each Test Informa	ation	15-Jun-2011								

Date Prepared	15-Jun-2011
pH (pH Units)	7.68
Conductivity (µS/cm)	128.00
Temperature (°C)	22.30
Volume Leachant (Litres)	0.880
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Meerts Certification does not apply to leachates

23/06/2011 17:33:37

SDC: 11057								
	23-40 ARDELL_SHF-37 534	Location: Custome Attention	r: Wardell A	rmstrong LLP	Rep	er Number: ort Number: erseded Report:	SH3068 135537 132894	
		CE		AGE BATCH				
	RESULTS						REF	BS EN 12457
Client Reference				Site Location				
Mass Sample taken (kg)	0.109			Moisture Conte	nt Patio (%)	21.7		
Mass of dry sample (kg) Particle Size <4mm	0.175 >95%		-	Dry Matter Con	itent Ratio (%)	82.2		
	- 5570							
Case		-						
SDG	110523-4	0						
_ab Sample Number(s)	3515883							
Sampled Date	20-May-2	011						
Customer Sample Ref.	TP 118							
Depth (m)	0.70							
Solid Waste Analysis	Resul	t						
otal Organic Carbon (%)	-					-	-	-
oss on Ignition (%)	-					-	-	-
Sum of BTEX (mg/kg)	-					-	-	-
Sum of 7 PCBs (mg/kg)	-					-	-	-
/ineral Oil (mɑ/kɑ)	-					-	-	-
	-					-	-	-
PAH Sum of 17 (mg/kg) bH (pH Units)	- 8.23					-	-	-
PAH Sum of 17 (mg/kg) DH (pH Units) ANC to pH 6 (mol/kg)	-					-	-	-
PAH Sum of 17 (mg/kg) DH (pH Units) ANC to pH 6 (mol/kg)	- 8.23 - -						- - -	
PAH Sum of 17 (mg/kg) pH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	- 8.23 - -	onc ⁿ in 10:1 elu	iate (mg/l)	A2 10:1 con	c ⁿ leached (mg/kg)	- - - - Limit valu	- - - es for complia	- - -
PAH Sum of 17 (mg/kg) oH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis	- 8.23 - -		nate (mg/l) hit of Detection	A2 10:1 con Result	c ⁿ leached (mg/kg)	- - - - Limit valu	- - - es for complia	- - - - nce leaching test
Vineral Oil (mg/kg) PAH Sum of 17 (mg/kg) OH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS	- 8.23 - - C 2 Ca	ılt Lim		7.12		- - - - Limit valu	- - - es for complia	- - - - nce leaching test
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS	- 8.23 - - C2 Cc Resu <0.000 <0.0000	1 lt Lim 01 015 <	it of Detection <0.0001 :0.000015	Result <0.001 <0.00015	Limit of Detection <0.001 <0.00015	- - - Limit valu using E	- - - S For complia	- - - - nce leaching test
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS	- 8.23 - - C2 Cc Resu <0.000 <0.0000	Ilt Lim 01	<pre>it of Detection <0.0001 <0.000015 <0.000011</pre>	Result <0.001 <0.00015 <0.00011	Limit of Detection <0.001 <0.00015 <0.00011	- - - Limit valu using E - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Fluoranthene by GCMS	- 8.23 C2 Cc Resu 0.0000 <0.0000	IIt Lim 01 015 015 <	<pre>it of Detection <0.0001 <0.000015 <0.000011 <0.000017</pre>	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00011 <0.00017 	- - - Limit valu using E	- - - S For complia	- - - - nce leaching test
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Fluoranthene by GCMS Anthracene by GCMS	- 8.23 - - C2 Cc Resu <0.000 <0.0000	IIt Lim D1 015 D11 <	<pre>it of Detection <0.0001 <0.000015 <0.000011</pre>	Result <0.001 <0.00015 <0.00011	Limit of Detection <0.001 <0.00015 <0.00011	- - - Limit valu using E - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Fluorene by GCMS Fluorene by GCMS Fluorene by GCMS		IIt Lim 01	<0.0001 <0.000015 <0.000015 <0.000017 <0.000015 <0.000015 <0.000022 <0.000014	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00011 <0.00017 <0.00015 <0.00022 <0.00014 	- - - - - Limit valu using E - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Fluorene by GCMS Fluorene by GCMS Fluorene by GCMS Fluorene by GCMS		IIt Lim 01	<0.0001 <0.000015 <0.000015 <0.000017 <0.000015 <0.000015 <0.000022 <0.000014 <0.000013	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00011 <0.00017 <0.00015 <0.00015 <0.00022 <0.00014 <0.00013 	- - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - at L/S 10 I/kg - - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Fluorene by GCMS Fluorene by GCMS Physene by GCMS Pyrene by GCMS		IIt Lim 01	 <0.0001 <0.00015 <0.000015 <0.000017 <0.000015 <0.000015 <0.000022 <0.000014 <0.000013 <0.000015 	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00011 <0.00017 <0.00015 <0.00012 <0.00014 <0.00013 <0.00015 	- - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Eluorene by GCMS		IIt Lim 01	<pre>it of Detection <0.0001 <0.000015 <0.000011 <0.000017 <0.000015 <0.000022 <0.000014 <0.000013 <0.000015 <0.000015 <0.000015 <0.000017 </pre>	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00011 <0.00017 <0.00015 <0.00012 <0.00014 <0.00013 <0.00015 <0.00015 <0.00015 <0.00017 	- - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - at L/S 10 I/kg - - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Fluorene by GCMS Fluorene by GCMS Eluorene by GCMS Pyrene by GCMS Pyrene by GCMS Pyrene by GCMS Banz(a)anthracene by GCMS Banz(a)anthracene by GCMS		IIt Lim 01	 <0.0001 <0.00015 <0.000015 <0.000017 <0.000015 <0.000015 <0.000022 <0.000014 <0.000013 <0.000015 	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00011 <0.00017 <0.00015 <0.00012 <0.00014 <0.00013 <0.00015 	- - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) bH (pH Units) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Naphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Phenanthrene by GCMS Eluorene by GCMS Eluorene by GCMS Eluorene by GCMS Pyrene by GCMS Pyrene by GCMS Banz(a)anthracene by GCMS Banzo(b)fluoranthene by GCMS Banzo(a)pyrene by GCMS		IIt Lim 01	<pre>it of Detection </pre> <0.0001 <0.000015 <0.000017 <0.000017 <0.000015 <0.000015 <0.000014 <0.000013 <0.000015 <0.000015 <0.000017 <0.000017 <0.000023 <0.000027 <0.000009	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00017 <0.00017 <0.00015 <0.00022 <0.00014 <0.00013 <0.00015 <0.00015 <0.00017 <0.00017 <0.00023 <0.00027 <0.00009 	- - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) PAH Sum of 17 (mg/kg) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Vaphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCM		IIt Lim 01	<pre>it of Detection </pre> <0.0001 <0.000015 <0.000017 <0.000017 <0.000015 <0.000015 <0.000014 <0.000013 <0.000015 <0.000017 <0.000017 <0.000017 <0.000023 <0.000027 <0.000009 <0.000016	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00017 <0.00017 <0.00015 <0.00022 <0.00014 <0.00013 <0.00015 <0.00015 <0.00017 <0.00017 <0.00023 <0.00027 <0.00009 <0.00016 	- - - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
PAH Sum of 17 (mg/kg) PAH Sum of 17 (mg/kg) ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis PAH Spec MS - Aqueous (W) Vaphthalene by GCMS Acenaphthene by GCMS Acenaphthylene by GCMS Fluoranthene by GCMS Phenanthrene by GCMS Phenanthrene by GCMS Eluorene by GCMS Phenanthrene by GCMS P		IIt Lim 01	<pre>it of Detection </pre> <0.0001 <0.000015 <0.000017 <0.000017 <0.000015 <0.000015 <0.000014 <0.000013 <0.000015 <0.000015 <0.000017 <0.000017 <0.000023 <0.000027 <0.000009	Result <0.001	Limit of Detection <0.001 <0.00015 <0.00017 <0.00017 <0.00015 <0.00022 <0.00014 <0.00013 <0.00015 <0.00015 <0.00017 <0.00017 <0.00023 <0.00027 <0.00009 	- - - - - - - using E - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -

Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.880

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

Volume Leachant (Litres)

ALcontrol Labo			CEF	RTIFICA	TE OF ANAL	YSIS			
Job: H_W	523-40 VARDELL_SHF 0534	-37	Location: Customer: Attention:	Wardell A Mike Kell	Armstrong LLP	Rej	ler Number: port Number: perseded Report:	SH3068 135537 132894	
			CEN	10:1 S	TAGE BATCH	TEST			
VAC ANALYTICAL	RESULTS	6						REF :	BS EN 12457
Client Reference					Site Location				
Mass Sample taken (kg	j) ().119			Moisture Conter	nt Ratio (%)	31.9		
Mass of dry sample (kg	g) (0.175			Dry Matter Cont	ent Ratio (%)	75.8		
Particle Size <4mm	>	>95%							
ase									
SDG	1	110523-40							
ab Sample Number(s)) 3	3515901							
Sampled Date		17-May-2011							
Customer Sample Ref.		NS 108							
Depth (m)		0.40							
Solid Waste Analysis		Result							
otal Organic Carbon (%)		-					-	-	
oss on Ignition (%)		-					-	-	-
um of BTEX (mg/kg) um of 7 PCBs (mg/kg)		0.0357 <3.00					-	-	-
lineral Oil (mg/kg)		-					-	-	-
AH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units)		7.91					-	-	-
NC to pH 6 (mol/kg) NC to pH 4 (mol/kg)		-					-	-	-
					T		-		
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluat	e (mg/l)	A2 10:1 conc ¹	leached (mg/kg)		es for complian S EN 12457-3 a	ce leaching test it L/S 10 l/kg
Arsenic		Result 0.0224		of Detection	Result 0.224	Limit of Detection <0.0012			-
Barium		-	~0	.00012		-	-	-	
Cadmium		<0.0001	<0	0.0001	<0.001	<0.001	-	-	-
Chromium		0.00489		.00022	0.0489	<0.0022	-	-	-
Copper		0.0609		.00085	0.609	<0.0085	-	-	-
fercury Dissolved (CVAF)		0.0000194	<0	.00001	0.000194	<0.0001	-	-	-
lolybdenum lickel		- 0.00315	<0	-	- 0.0315	- <0.0015	-	-	-
ead		0.00169		.00002	0.0169	<0.0013	-		
ntimony		-		-	-	-	-	-	-
Selenium		0.00443	<0	.00039	0.0443	<0.0039	-	-	-
linc		0.00383	<0	.00041	0.0383	<0.0041	-	-	-
Chloride		-		-	-	-		-	
Sulphate (soluble)		- 30.2		- <2	302	<20	-	-	
otal Dissolved Solids		-		-	-	-	-	-	-
otal Monohydric Phenols (W)	0		<0	0	<0	-	-	-
issolved Organic Carbon		-		-	-	-	-	-	-
each Test Information	n								
ate Prepared		15-Jun-2011							

Date Prepared	15-Jun-2011
pH (pH Units)	7.68
Conductivity (µS/cm)	215.00
Temperature (°C)	22.20
Volume Leachant (Litres)	0.871
Volume of Eluate VE1 (Litres)	

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Meerts Certification does not apply to leachates

23/06/2011 17:33:37

ALcontrol Laboratories CERTIFICATE OF ANALYSIS										
Job:	110523-40 1_WARDELL_SH 6H10534	F-37	Location: Customer: Attention:	Wardell Mike Ke	Armstrong LLP	Re	der Number: port Number: perseded Report:	SH3068 135537 132894		
		.e						DEE	: BS EN 12457	
	AL RESULI	5						REF	: BS EN 1245/	
Client Reference					Site Location					
Mass Sample taken		0.119			Moisture Conte		31.9			
Mass of dry sample	(kg)	0.175			Dry Matter Con	tent Ratio (%)	75.8			
Particle Size <4mm		>95%								
Case										
SDG		110523-40								
Lab Sample Number	.(s)	3515901						1		
Sampled Date	(-)	17-May-201	1							
Customer Sample R	of	WS 108								
-	C 1.	0.40								
Depth (m)		0.40								
Solid Waste Analysi	s	Result								
Fotal Organic Carbon (%)		-			_		-	-	-	
oss on Ignition (%)		-					-	-	-	
Sum of BTEX (mg/kg)		0.0357 <3.00					-	-	-	
Sum of 7 PCBs (mg/kg) /lineral Oil (mg/kg)		-					-	-	-	
PAH Sum of 17 (mg/kg)		-					-	-	-	
oH (pH Units)		7.91					-	-	-	
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)		-					-	-	-	
Eluate Analysis			in 10:1 eluate		,	c ⁿ leached (mg/kg)	using E		ance leaching test 3 at L/S 10 l/kg	
Hexavalent Chromium		Result		f Detection	Result <0.3	Limit of Detection	-			
bH		<0.03 8		0.03).001	80	<0.3 <0.01	-	-		
Sulphide		<0.01		0.01	<0.1	<0.1	-	-	-	
Fotal Cyanide (W)		0.056		0.05	0.56	<0.5	-	-	-	
Free Cyanide (W)		< 0.05		0.05	<0.5	< 0.5	-	-	-	
Phenol by HPLC (W) Thiocyanate (W)		<0.002 <0.05		0.002 0.05	<0.02 <0.5	<0.02 <0.5	-	-	-	
Boron		0.0781		.0094	0.781	<0.094				
PAH Spec MS - Aqueous	(W)									
Naphthalene by GCMS		<0.0001		.0001	<0.001	<0.001	-	-	-	
Acenaphthene by GCMS		0.0000803		000015	0.000803	< 0.00015	-	-	-	
Acenaphthylene by GCMS Fluoranthene by GCMS	•	<0.000011 0.0000523		000011 000017	<0.00011 0.000523	<0.00011 <0.00017	-	-	-	
Anthracene by GCMS		0.0000523		000017	0.000523	<0.00017	-		-	
Phenanthrene by GCMS		0.000027		000022	0.00027	< 0.00022	-	-	-	
luorene by GCMS		0.0000311		000014	0.000311	<0.00014	-	-	-	
Chrysene by GCMS		0.0000277		000013	0.000277	<0.00013	-	-	-	
Pyrene by GCMS	MS	0.0000565		000015	0.000565	< 0.00015	-	-	-	
Benz(a)anthracene by GCl Benzo(b)fluoranthene by G		0.0000247		000017 000023	0.000247	<0.00017 <0.00023	-	-	-	
Benzo(k)fluoranthene by G		<0.000023		000023	<0.00023	<0.00023	-	-	-	
Benzo(a)pyrene by GCMS		0.00000926	; <0.(00009	0.0000926	<0.00009	-	-	-	
Dibenzo(ah)anthracene by	GCMS	<0.000016	<0.0	000016	<0.00016	<0.00016	-	-	-	
each Test Informat	ion									
Date Prepared		15-Jun-2011								
H (pH Units)		7.68								
Conductivity (µS/cm)		215.00								
Temperature (°C)		22.20								
Volume Leachant (Litres)		0.871								

Volume Leachant (Litres) 0.871 Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

ALcontrol La	abuidluiles		CEF	RTIFIC	ΑΤΕ Ο		LYSIS			Validated
SDG: Job: Client Reference:	110523-40 H_WARDELL_SH SH10534	F-37	Location: Customer: Attention:	Wardell Mike Ke	Armstron	g LLP	R	rder Number: eport Number: uperseded Report:	SH3068 135537 132894	
					•	BATC				
VAC ANALYTIC		'e							DEE	: BS EN 12457
		5			0.4					. DO EN 12437
Client Reference	(1)	0.440				ocation		24.0		
Mass Sample taker		0.119					ent Ratio (%)	31.9		
Mass of dry sample		0.175			Dry Ma	atter Cor	ntent Ratio (%)	75.8		
Particle Size <4mm		>95%								
Case										
SDG		110523-40								
_ab Sample Numbe	er(s)	3515901								
Sampled Date		17-May-201	1							
Customer Sample I	Ref.	WS 108								
Depth (m)		0.40								
Solid Waste Analys	sis	Result								
otal Organic Carbon (%)		_						_		-
oss on Ignition (%)		-						-	-	-
Sum of BTEX (mg/kg)		0.0357						-	-	-
Sum of 7 PCBs (mg/kg)		<3.00						-	-	-
/lineral Oil (mg/kg) PAH Sum of 17 (mg/kg)		-						-	-	-
H (pH Units)		7.91						-	-	-
ANC to pH 6 (mol/kg)		-						-	-	-
ANC to pH 4 (mol/kg)		-			1			-	-	-
Eluate Analysis		C2 Conc ⁿ	in 10:1 eluate	e (mg/l)	A 2	10:1 cor	nc ⁿ leached (mg/kg)		-	ance leaching test 3 at L/S 10 l/kg
PAH Spec MS - Aqueous	s (W)	Result	Limit o	of Detection	I F	Result	Limit of Detectio	n		
Benzo(ghi)perylene by G		<0.000016	<0 (000016	<(0.00016	<0.00016		_	
ndeno(123cd)pyrene by		< 0.000014		000014		0.00014	< 0.00014	-	-	-
PAH 16 EPA Total by GC	CMS	0.000336		<0	0.	.00336	<0	-	-	-
TPH CWG (W) Gurrogate Recovery				10			10			
GRO TOT (C5-C12)		- <0.05		<0 0.05	+	- <0.5	<0		-	
Aliphatics C5-C6		< 0.01		0.01		<0.1	<0.1	-	-	-
Aliphatics >C6-C8		<0.01		0.01		<0.1	<0.1	-	-	-
Aliphatics >C8-C10 Aliphatics >C10-C12		<0.01		0.01		<0.1	<0.1	-	-	-
Aliphatics >C10-C12		<0.01 <0.01		0.01		<0.1 <0.1	<0.1	-	-	-
Aliphatics >C16-C21		<0.01		0.01		<0.1	<0.1		-	-
Aliphatics >C21-C35		<0.01		0.01		<0.1	<0.1	-	-	-
Total Aliphatics >C12-C3	5	<0.01		0.01		<0.1	<0.1	-	-	-
Aromatics C6-C7 Aromatics >C7-C8		<0.01		0.01		<0.1	<0.1		-	
Aromatics >C7-C8		<0.01 <0.003		0.01		<0.1 <0.03	<0.1	-	-	-
Aromatics >EC8 -EC10		<0.003		0.01		<0.1	<0.03		-	-
Aromatics >EC10-EC12		<0.01		0.01		<0.1	<0.1	-	-	-
Aromatics >EC12-EC16		<0.01		0.01		<0.1	<0.1		-	-
Aromatics >EC16-EC21 Aromatics >EC21-EC35		<0.01 <0.01		0.01	+	<0.1 <0.1	<0.1		-	
Total Aromatics >EC12-E	EC35	<0.01		0.01		<0.1	<0.1	-	-	
.each Test Informa	ation									
Date Prepared		15-Jun-2011								
H (pH Units)		7.68								
Conductivity (µS/cm)		215.00								
Temperature (°C)		22.20								
/olume Leachant (Litres)		0.871								

Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

0.871

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

Volume Leachant (Litres)

	aboratories		CEF	RTIFICA	TE OF ANAL	YSIS			
SDG: Job:	110523-40 H_WARDELL_SH	F-37	Location: Customer:		Armstrong LLP	Re	der Number: port Number:	SH3068 135537	
Client Reference:	SH10534		Attention:	Mike Kell	•		perseded Report:	132894	
			CEN	10:1 S	TAGE BATCH	TEST			
VAC ANALYTIC	AL RESULT	S						REF :	BS EN 12457
Client Reference					Site Location				
Mass Sample take	n (kg)	0.119			Moisture Conte	ent Ratio (%)	31.9		
Mass of dry sampl	e (kg)	0.175			Dry Matter Con	tent Ratio (%)	75.8		
Particle Size <4mm	l	>95%							
Case									
SDG		110523-40							
ab Sample Numb	er(s)	3515901							
Sampled Date		17-May-201	11						
Customer Sample	Ref.	WS 108							
Depth (m)		0.40							
Solid Waste Analy	sis	Result							
otal Organic Carbon (%)		-			•		-	-	-
oss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)		0.0357 <3.00					-	-	-
lineral Oil (mg/kg)							-	-	-
AH Sum of 17 (mg/kg)		-					-	-	-
H (pH Units)		7.91					-	-	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)		-					-	-	-
(noing)		1			I.				
Eluate Analysis C2 C		C ₂ Con	c ⁿ in 10:1 eluate	in 10:1 eluate (mg/l) A 2 10:1 conc ⁿ leached (mg/kg)			Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
IPH CWG (W)		Result	Limit o	of Detection	Result	Limit of Detection	n		
Benzene by GC		<0.007	<	0.007	<0.07	<0.07	<u> </u>	_	
oluene by GC		< 0.004		0.004	<0.04	< 0.04	-	-	-
thylbenzene by GC		<0.005	<(0.005	<0.05	<0.05	-	-	-
n & p Xylene by GC		<0.008		0.008	<0.08	<0.08	-	-	-
Xylene by GC Sum m&p and o Xylene	by CC	<0.003 0		0.003 <0	<0.03 0	<0.03 <0		-	-
Sum of BTEX by GC		0		<0	0	<0	-		-
PH (Total Aliphatics +	otal	<0.01		0.01	<0.1	<0.1	-	-	-
Aromatics) >C5-C35									
each Test Inform	ation								
	ation	45 bis 001	1						
Leach Test Inform Date Prepared DH Units)	ation	15-Jun-201 7.68	1						

215.00 onductivity (µ Temperature (°C) 22.20 Volume Leachant (Litres) 0.871 Volume of Eluate VE1 (Litres)

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates

23/06/2011 17:33:37

CERTIFICATE OF ANALYSIS

Validated

SDG: 1	10523-40	Location:		Order Number:	SH3068
300. 11	1_WARDELL_SHF-37	Customer:	Wardell Armstrong LLP	Report Number:	135537
Client Reference: S	SH10534	Attention:	Mike Kelly	Superseded Report:	132894

Notification of Non-Conforming Work

					U	
Sample Number	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
3516050	TP 111	0.70	SOLID	VOC MS (S)	1,1,2-Trichloro-1,2,2-Trifluoroethane (TIC)	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1.1.2-Tetrachloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1.1-Trichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1.2.2-Tetrachloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1.2-Trichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1-Dichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1-Dichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.1-Dichloropropene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2.3-Trichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2.3-Trichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2.4-Trichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2.4-Trimethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2-Dibromo-3-chloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2-Dibromoethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2-Dichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.2-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.3.5-Trimethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.3-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.3-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	1.4-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	2.2-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	2-Chlorotoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	4-Bromofluorobenzene**	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

			CEI	RTIFICATE OF ANA	ALYSIS	
SDG: Job: Client Referer		0 ELL_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 132894
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516050	Sample Ref. TP 111	0.70	SOLID	VOC MS (S)	4-Chlorotoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	4-Isopropyltoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Benzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Bromobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Bromochloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Bromodichloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Bromoform	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Bromomethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Carbon disulphide	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Carbontetrachloride	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Chlorobenzene	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Chloroethane	Volatile Analysis performed on vessel with headspace due testir requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Chloroform	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Chloromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	cis-1-2-Dichloroethene	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	cis-1-3-Dichloropropene	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Dibromochloromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Dibromofluoromethane**	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Dibromomethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Dichlorodifluoromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Dichloromethane	Volatile Analysis performed on vessel with headspace due testir requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Dilution	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Ethylbenzene	Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)		Volatile Analysis performed on vessel with headspace due testin requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Isopropylbenzene	Volatile Analysis performed on vessel with headspace due testin requirement

CERTIFICATE OF ANALYSIS

SDG: Job: Client Referen) ELL_SHF-37	Location:		Order Number:	SH3068
			Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Report Number: Superseded Report:	135537 132894
Sample	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516050	TP 111	0.70	SOLID	VOC MS (S)	LCS Reagent	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Methyl Tertiary Butyl Ether	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Naphthalene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	n-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	o-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	p/m-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Propylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	sec-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Styrene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Tert-amyl methyl ether	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	tert-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Tetrachloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	TIC Instructions	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Toluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Toluene-d8**	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	trans-1-2-Dichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	trans-1-3-Dichloropropene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Trichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Trichlorofluoromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Trichlorofluorormethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	Vinyl Chloride	Volatile Analysis performed on vessel with headspace due testing requirement
3516050	TP 111	0.70	SOLID	VOC MS (S)	VOC TIC	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1,1,2-Trichloro-1,2,2-Trifluoroethane (TIC)	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.1.1.2-Tetrachloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.1.1-Trichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

			CEI	RTIFICATE OF AN	ALYSIS	
SDG: Job: Client Refer	_	DELL_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 132894
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516059	Sample Ref. TP 111	1.20	SOLID	VOC MS (S)	1.1.2.2-Tetrachloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.1.2-Trichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.1-Dichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.1-Dichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.1-Dichloropropene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2.3-Trichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2.3-Trichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2.4-Trichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2.4-Trimethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2-Dibromo-3-chloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2-Dibromoethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2-Dichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.2-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.3.5-Trimethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.3-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.3-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	1.4-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	2.2-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	2-Chlorotoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	4-Bromofluorobenzene**	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	4-Chlorotoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	4-Isopropyltoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Benzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Bromobenzene	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

			CEI	RTIFICATE OF AN	ALYSIS	
SDG: Job: Client Referer) ELL_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 132894
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516059	Sample Ref. TP 111	1.20	SOLID	VOC MS (S)	Bromochloromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Bromodichloromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Bromoform	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Bromomethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Carbon disulphide	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Carbontetrachloride	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Chlorobenzene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Chloroethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)		Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Chloromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	cis-1-2-Dichloroethene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)		Volatile Analysis performed on vessel with headspace due testir requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)		Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Dibromofluoromethane**	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Dibromomethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)		Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Dichloromethane	Volatile Analysis performed on vessel with headspace due testir requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Dilution	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Ethylbenzene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Hexachlorobutadiene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Isopropylbenzene	Volatile Analysis performed on vessel with headspace due testir requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	LCS Reagent	Volatile Analysis performed on vessel with headspace due testir requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Methyl Tertiary Butyl Ether	Volatile Analysis performed on vessel with headspace due testir requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Naphthalene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	n-Butylbenzene	Volatile Analysis performed on vessel with headspace due testin requirement

CERTIFICATE OF ANALYSIS

			CEI	RTIFICATE OF AN	NALYSIS	
SDG: Job: Client Referen	_) ELL_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 : 132894
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516059	Sample Ref. TP 111	1.20	SOLID	VOC MS (S)	o-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	p/m-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Propylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	sec-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Styrene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Tert-amyl methyl ether	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	tert-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Tetrachloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	TIC Instructions	Volatile Analysis performed on vessel with headspace due testing requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Toluene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Toluene-d8**	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	trans-1-2-Dichloroethene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	trans-1-3-Dichloropropene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Trichloroethene	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Trichlorofluoromethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Trichlorofluorormethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	Vinyl Chloride	Volatile Analysis performed on vessel with headspace due testin requirement
3516059	TP 111	1.20	SOLID	VOC MS (S)	VOC TIC	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1,1,2-Trichloro-1,2,2-Trifluoroethane (TIC)	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.1.1.2-Tetrachloroethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.1.1-Trichloroethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.1.2.2-Tetrachloroethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.1.2-Trichloroethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.1-Dichloroethane	Volatile Analysis performed on vessel with headspace due testin requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.1-Dichloroethene	Volatile Analysis performed on vessel with headspace due testin requirement

CERTIFICATE OF ANALYSIS

					ALYSIS	
SDG: Job: Client Refere	_	DELL_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 132894
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516101	Sample Ref. TP 115	0.30	SOLID	VOC MS (S)	1.1-Dichloropropene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2.3-Trichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2.3-Trichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2.4-Trichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2.4-Trimethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2-Dibromo-3-chloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2-Dibromoethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2-Dichloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.2-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.3.5-Trimethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.3-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.3-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	1.4-Dichlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	2.2-Dichloropropane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	2-Chlorotoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	4-Bromofluorobenzene**	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	4-Chlorotoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	4-Isopropyltoluene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Benzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Bromobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Bromochloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Bromodichloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Bromoform	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Bromomethane	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

Ľ			CEI	RTIFICATE OF AN	ALYSIS	
SDG: Job: Client Referer		0 ELL_SHF-37	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 132894
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3516101	Sample Ref. TP 115	0.30	SOLID	VOC MS (S)	Carbon disulphide	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Carbontetrachloride	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Chlorobenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Chloroethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Chloroform	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Chloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	cis-1-2-Dichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	cis-1-3-Dichloropropene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Dibromochloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Dibromofluoromethane**	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Dibromomethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Dichlorodifluoromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Dichloromethane	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Dilution	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Ethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Hexachlorobutadiene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Isopropylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	LCS Reagent	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Methyl Tertiary Butyl Ether	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Naphthalene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	n-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	o-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	p/m-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	Propylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3516101	TP 115	0.30	SOLID	VOC MS (S)	sec-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement

Validated

SDG : 110523-40			CEI	Location: Order Number:				
Job: H_WARDELL_SHF-37 Client Reference: SH10534		Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report	SH3068 135537 132894			
Sample Number	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Styrene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Tert-amyl methyl ether	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	tert-Butylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Tetrachloroethene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	TIC Instructions	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Toluene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Toluene-d8**	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	trans-1-2-Dichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	trans-1-3-Dichloropropene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Trichloroethene	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Trichlorofluoromethane	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Trichlorofluorormethane	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	Vinyl Chloride	Volatile Analysis performed on vessel with headspace due testing requirement		
3516101	TP 115	0.30	SOLID	VOC MS (S)	VOC TIC	Volatile Analysis performed on vessel with headspace due testing requirement		

Note : Test results may be invalid

C

CERTIFICATE	OF ANALYSIS
-------------	--------------------

SH3068 SDG: 110523-40 Location: Order Number: Job: H_WARDELL_SHF-37 Customer: Wardell Armstrong LLP 135537 Report Number: Client Reference: SH10534 Attention: Mike Kelly Superseded Report: 132894

Table of Results - Appendix

No Determinatio	on Possible	#	ISO 17025 Accredited		*	Subcontracted Test	M	MCERTS Accredited
No Fibres Detec	ted	PFD	Possible Fibres Detected		»	Result previously reported (Incremental reports only)	EC	Equivalent Carbon
hod detection limits	are not always achievable (due to vario	ous circumstances beyond our	control		(incremental reports only)		(Aromatics C8-C35)
Method No		Refe	rence			Description		Wet/Dry Surro
PM001				Preparati	on of Sar	ples for Metals Analysis		Sample 1 Corre
PM024	Modified BS 1377			Soil prepa	aration in	cluding homogenisation, moistur	e screens of	
				soils for A	sbestos	Containing Material		
PM114				Leaching Cumulativ		e for CEN Two Stage BatchTes	t 2:1/8:1	
PM115						e for CEN One Stage Leach Te	st 2:1 & 10:1	
				1 Step		jj-		
TM001	In - house Method				ation of a	sbestos containing material by s	creening on	
TM048	HSG 248, Asbesto	e. The a	nalvete' quide for	Solids	tion of As	bestos in Bulk Material		
11040	sampling, analysis			lacitatica		bestos in Duik Material		
TM061	Method for the Det	erminatio	on of	Determina	ation of E	xtractable Petroleum Hydrocarb	ons by	
	EPH,Massachuset			GC-FID (
TM062 (S)		-	lings Methods for the mples from National	Determina	ation of F	henols in Soils by HPLC		
	Grid Sites version							
TM089	Modified: US EPA			Determina	ation of G	asoline Range Hydrocarbons (G	RO) and	
						pounds by Headspace GC-FID		
TM101	Method 4500B & C 1999	, AWWA	APHA, 20th Ed.,	Determina Kone Ana		ulphide in soil and water sample	s using the	
TM116	Modified: US EPA	Method	8260, 8120, 8020.			olatile Organic Compounds by H	leadspace /	
	624, 610 & 602		,	GC-MS		,-		
TM132	In - house Method			ELTRA C	S800 Op	erators Guide		
TM133	BS 1377: Part 3 19	990;BS 6	068-2.5		ation of p	H in Soil and Water using the Gl	_рН рН	
TM151	Method 3500D, AV		HA 20th Ed 1999	Meter	ation of L	exavalent Chromium using Kon	a analyser	
TM151	Method 3125B, AV					exavalent Chromium using Kone us Samples by ICP-MS	e analysei	
TM152	Method 4500A,B,C					otal Cyanide, Free (Easily Libera	atable)	
TWIT55	Ed., 1999	, I, IVI AV	WWA/AFTIA, 2001			vanate using the Skalar SANS+		
				Segmente	ed Flow A	nalyser	-	
TM157		_	ph (GC) system and			VOC in Soils by GC-MS extracte	ed by	
TM168	HP 5973 Mass Sel		prinated Biphenyls by	sonication		Acetone /HO12 and EC7 Polychlorinated	Binhenvl	
INITOO	Gas Chromatograp		Sinated Diprenyis by			MS in Soils	Dipricityi	
TM173	Analysis of Petrole	-				peciated Extractable Petroleum		
	Environmental Mee Hydrocarbon Criter		al Petroleum	Hydrocarl	bons in S	oils by GC-FID		
TM174	Analysis of Petrole		ocarbons in	Determina	ation of S	peciated Extractable Petroleum		
	Environmental Med					aters by GC-FID		
	Hydrocarbon Criter							
TM178	Modified: US EPA	Method	8100	Determina GC-MS ir		olynuclear Aromatic Hydrocarbo	ns (PAH) by	
TM180	Sulphide in waters	and was	te waters 1991 ISBN			Of Easily Liberated Sulphide In	Soil	
	01 175 7186 SCA			Samples	by Ion Se	lective Electrode Technique		
TM181	US EPA Method 60	010B				outine Metals in Soil by iCap 65	00 Duo	
TM183	BS EN 23506-2003) (BS 60	68-2.74:2002) ISBN	ICP-OES Determin		race Level Mercury in Waters ar	nd Leachates	
111100	0 580 38924 3	-, (00 00	00-2.14.2002/10DN			ur Atomic Fluorescence Spectro		
TM184	EPA Methods 325.	1 & 325.	2,	The Dete	rmination	of Anions in Aqueous Matrices		
TMOTO	Minner		A method 05 to			ometric Analysers		
TM218	Microwave extracti					on - EPA method 3546	hu IDIO	
TM221			a - Atomic Emission Spectral Information:	Determina Emission		cid extractable Sulphate in Soils	by IRIS	
	Winge, Fassel, Pet			2111001011	200000			
TM222	In-House Method					lot Water Soluble Boron in Soils	(10:1	
TM007	Otondard an attact	for the	vemination of contain			Emission Spectrometer	tabla)	
TM227	Standard methods and wastewaters 2		xamination of waters	Determina Cyanide a		otal Cyanide, Free (Easily Libera vanate	atable)	
	Method 4500.	Ser Card		Syamoo		,		
TM241	Methods for the Ex					of Hexavalent Chromium in Wa	ters and	
	Associated Materia			Leachate	s using th	e Kone Analyser		
TM243	Potable Waters and	u sewag	e eniuents 1980.					
TM245	By GC-FID			Determin	ation of 6	RO by Headspace in waters		
TM245	•	of Flectr	ical Conductivity and			H in Water and Leachate using t	he GLoH nH	
	the Laboratory dete			Meter	and or p			
	Natural, Treated ar	nd Waste	waters HMSO					

Page 59 of 63

	Laboratories	CEF	RTIFICATE OF ANAL	YSIS		V	alidated
SDG: Job: Client Reference:	110523-40 H_WARDELL_SHF-37 SH10534	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 135537 132894		
Method No TM259	Reference by HPLC	I	Determination of Pheno	Description Is in Waters and Leachates by HPLC		/et/Dry ample ¹	Surrogate Corrected

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE OF ANALYSIS

Validated

SDG:	110523-40	Location:	Order Number:	SH3068
Job:	H_WARDELL_SHF-37	Customer: Wardel	I Armstrong LLP Report Number:	135537
Client Reference:	SH10534	Attention: Mike K	elly Superseded Repo	rt: 132894

Test Completion Dates

		Tes								
Lab Sample No(s)	3515843	3515844	3515847	3515852	3515853	3515854	3515856	3515860	3515861	3515862
Customer Sample Ref.	TP 101	TP 102	TP 103	TP 104	TP 105	TP 105	TP 108	TP 107	TP 108	TP 109
oustonier oumpie Kei.										
AGS Ref.										
Depth	0.60	0.80	0.40	0.50	0.30	0.90	0.50	0.70	0.75	0.60
•										
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
Anions by Kone (soil)	27-May-2011		02-Jun-2011	01-Jun-2011	01-Jun-2011		01-Jun-2011	01-Jun-2011	27-May-2011	27-May-2011
Asbestos Containing Material Screen			26-May-2011	26-May-2011	25-May-2011		26-May-2011	28-May-2011		
Asbestos Identification		07.14 0044	28-May-2011			07.14 00.44				04.04
Boron Water Soluble	15-Jun-2011	27-May-2011		15-Jun-2011		27-May-2011				31-May-2011
CEN 10:1 Leachate (1 Stage) CEN Readings	21-Jun-2011			21-Jun-2011						
Cyanide Comp/Free/Total/Thiocyanate	01-Jun-2011	01-Jun-2011	02-Jun-2011	31-May-2011	01-Jun-2011	01-Jun-2011	31-May-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011
Dissolved Metals by ICP-MS	17-Jun-2011	01-301-2011	02-3011-2011	17-Jun-2011	01-001-2011	01-501-2011	51-Way-2011	01-001-2011	01-3011-2011	01-301-2011
Easily Liberated Sulphide	11-0011-2011	02-Jun-2011		17-001-2011		02-Jun-2011				01-Jun-2011
EPH CWG (Aliphatic) GC (S)		02 001 2011		02-Jun-2011	27-May-2011	02 001 2011		02-Jun-2011		01 0411 2011
EPH CWG (Aromatic) GC (S)				02-Jun-2011	27-May-2011			02-Jun-2011		
GRO by GC-FID (S)				02-Jun-2011	02-Jun-2011			02-Jun-2011		
Hexavalent Chromium (s)	31-May-2011	31-May-2011	02-Jun-2011	02-Jun-2011	31-May-2011	31-May-2011	02-Jun-2011	02-Jun-2011	02-Jun-2011	02-Jun-2011
Mercury Dissolved	20-Jun-2011			20-Jun-2011						
Metals by iCap-OES (Soil)		27-May-2011	02-Jun-2011	02-Jun-2011	31-May-2011	01-Jun-2011	02-Jun-2011	02-Jun-2011	02-Jun-2011	31-May-201
PAH by GCMS		02-Jun-2011			-	31-May-2011				02-Jun-2011
PAH Spec MS - Aqueous (W)	21-Jun-2011			21-Jun-2011						
рН	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011
Phenols by HPLC (S)	31-May-2011	31-May-2011	02-Jun-2011	01-Jun-2011	31-May-2011	31-May-2011	01-Jun-2011	02-Jun-2011	27-May-2011	27-May-201
Sample description	24-May-2011	24-May-2011	01-Jun-2011	27-May-2011	24-May-2011	24-May-2011	27-May-2011	31-May-2011	25-May-2011	25-May-201
Semi Volatile Organic Compounds	31-May-2011	-	02-Jun-2011	01-Jun-2011	31-May-2011	-	01-Jun-2011	01-Jun-2011	31-May-2011	
Total Organic Carbon	31-May-2011		02-Jun-2011				01-Jun-2011			01-Jun-2011
Total Sulphate	31-May-2011	31-May-2011	02-Jun-2011	01-Jun-2011	31-May-2011	31-May-2011	01-Jun-2011	01-Jun-2011	31-May-2011	31-May-2011
Total Sulphur		31-May-2011				31-May-2011				31-May-2011
TPH CWG GC (S)				02-Jun-2011	02-Jun-2011			02-Jun-2011		
VOC MS (S)				01-Jun-2011	01-Jun-2011			01-Jun-2011		
Lab Sample No(s)	3515863	3515866	3515869	3515870	3515872	3515876	3515878	3515882	3515883	3515886
Lab Sample No(S)	3313003		3313003	3313070	3313072					
• • • •	TD 440	TD 444	TD 444	TD 440	TD 442					
Customer Sample Ref.	TP 110	TP 111	TP 111	TP 112	TP 113	TP 114	TP 115	TP 117	TP 118	TP 119
Customer Sample Ref.	TP 110	TP 111	TP 111	TP 112	TP 113	TP 114	TP 115	TP 117	TP 118	TP 119
Customer Sample Ref. AGS Ref.		TP 111	TP 111	TP 112	TP 113	TP 114	TP 115	TP 117	TP 118	TP 119
Customer Sample Ref.		TP 111 0.70	TP 111 1.20	TP 112	TP 113 0.45	TP 114	TP 115	TP 117	0.70	TP 119
Customer Sample Ref. AGS Ref.										
Customer Sample Ref. AGS Ref. Depth Type	1.00	0.70 SOLID	1.20	0.50	0.45 SOLID	0.80 SOLID	0.30	0.40	0.70	0.30
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil)	1.00 SOLID	0.70	1.20 SOLID 02-Jun-2011	0.50	0.45	0.80	0.30 SOLID 01-Jun-2011	0.40	0.70 SOLID	0.30
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w)	1.00 SOLID	0.70 SOLID	1.20 SOLID	0.50	0.45 SOLID	0.80 SOLID	0.30 SOLID	0.40	0.70 SOLID	0.30
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil)	1.00 SOLID 02-Jun-2011	0.70 SOLID 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011	0.50	0.45 SOLID	0.80 SOLID	0.30 SOLID 01-Jun-2011 20-Jun-2011	0.40	0.70 SOLID 01-Jun-2011	0.30 SOLID
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen	1.00 SOLID 02-Jun-2011	0.70 SOLID 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011	0.50 SOLID	0.45 SOLID	0.80 SOLID 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011	0.40 SOLID	0.70 SOLID 01-Jun-2011	0.30 SOLID
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble	1.00 SOLID 02-Jun-2011	0.70 SOLID 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011	0.50 SOLID	0.45 SOLID	0.80 SOLID 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011	0.40 SOLID	0.70 SOLID 01-Jun-2011 28-May-2011	0.30 SOLID
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage)	1.00 SOLID 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011	0.50 SOLID	0.45 SOLID	0.80 SOLID 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011	0.40 SOLID	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011	0.30 SOLID 31-May-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings	1.00 SOLID 02-Jun-2011 26-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011	0.50 SOLID 27-May-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011	0.40 SOLID 31-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011	0.30 SOLID 31-May-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate	1.00 SOLID 02-Jun-2011 26-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 17-Jun-2011	0.50 SOLID 27-May-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 25-Jun-2011 21-Jun-2011 17-Jun-2011	0.40 SOLID 31-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS	1.00 SOLID 02-Jun-2011 26-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 17-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 25-Jun-2011 21-Jun-2011 17-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide	1.00 SOLID 02-Jun-2011 26-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 22-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) EPH CWG (Aromatic) GC (S)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011	0.45 SOLID 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (W)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 22-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 23-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 15-Jun-2011 21-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (w)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 0-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 22-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 17-Jun-2011 20-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 20-Jun-2011 20-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 0-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 31-May-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 31-May-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 31-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) EPH CWG (Aromatic) GC (S) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (s) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (S) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 21-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (S) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 31-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 02-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (S) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (w) Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S)	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011	0.30 0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (W) Sample description	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011 01-Jun-2011 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 21-Jun-2011 02-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (W) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (W) Sample description	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 20-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Ju	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011 27-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) Bert CWG (Aromatic) Aqueous GC (W) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (W) Sample description Semi Volatile Organic Compounds Sulphide	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011 20-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 31-May-2011 27-May-2011 25-May-2011 31-May-2011	0.80 SOLID 01-Jun-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 21-Jun-2011 02-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 31-May-2011 01-Jun-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) Aqueous GC (W) Ber CWG (Aromatic) Aqueous GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (S) Phe	1.00 SOLID 02-Jun-2011 26-May-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 27-May-2011 27-May-2011 31-May-2011	0.80 01-Jun-2011 27-May-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chronium (s) Hexavalent Chronium (s) Hexavalent Chronium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (W) Sample description Semi Volatile Organic Compounds Sulphide Total Organic Carbon Total Sulphate	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 17-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 27-May-2011 27-May-2011 31-May-2011	0.80 01-Jun-2011 27-May-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 24-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (W) Sample description Semi Volatile Organic Compounds Sulphide Total Organic Carbon Total Sulphate Total Sulphate	1.00 SOLID 02-Jun-2011 26-May-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 15-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 27-May-2011 27-May-2011 31-May-2011	0.80 01-Jun-2011 27-May-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 20-Jun-2011 01-Jun-2011 20-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Anomatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (S) GRO by GC-FID (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (w) Mercury Dissolved Metals by iCap-OES (Soil) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (W) Sample description Semi Volatile Organic Compounds Sulphide Total Organic Carbon Total Sulphate Total Sulphate Total Sulphate	1.00 SOLID 02-Jun-2011 26-May-2011 31-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 1-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 27-May-2011 27-May-2011 31-May-2011	0.80 01-Jun-2011 27-May-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 24-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 24-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30
Customer Sample Ref. AGS Ref. Depth Type Anions by Kone (soil) Anions by Kone (w) Asbestos Containing Material Screen Boron Water Soluble CEN 10:1 Leachate (1 Stage) CEN Readings Cyanide Comp/Free/Total/Thiocyanate Dissolved Metals by ICP-MS Easily Liberated Sulphide EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) Aqueous GC (W) EPH CWG (Aliphatic) GC (S) EPH CWG (Aromatic) Aqueous GC (W) EPH CWG (Aromatic) GC (S) GRO by GC-FID (W) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (s) Hexavalent Chromium (s) PAH by GCMS PAH Spec MS - Aqueous (W) pH pH Value Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (S) Phenols by HPLC (W) Sample description Semi Volatile Organic Compounds Sulphide Total Organic Carbon Total Sulphate	1.00 SOLID 02-Jun-2011 26-May-2011 26-May-2011 31-May-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011	0.70 SOLID 01-Jun-2011 28-May-2011 28-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	1.20 SOLID 02-Jun-2011 20-Jun-2011 28-May-2011 24-May-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.50 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011	0.45 SOLID 27-May-2011 01-Jun-2011 01-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 27-May-2011 27-May-2011 31-May-2011	0.80 01-Jun-2011 27-May-2011 27-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 0.30 SOLID 01-Jun-2011 20-Jun-2011 28-May-2011 21-Jun-2011 17-Jun-2011 17-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 20-Jun-2011 01-Jun-2011 20-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.40 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 24-May-2011	0.70 SOLID 01-Jun-2011 28-May-2011 21-Jun-2011 01-Jun-2011 01-Jun-2011 17-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011	0.30 SOLID 31-May-2011 01-Jun-2011 02-Jun-2011 02-Jun-2011 02-Jun-2011 01-Jun-2011 01-Jun-2011 01-Jun-2011 31-May-2011 31-May-2011

CERTIFICATE OF ANALYSIS

CERTIFICATE OF ANALYSIS SDG: H10523-40 Job: H_WARDELL_SHF-37 Client Reference: SH10534 Coder Number: SH3068 Report Number: S13557 Superseded Report: 132894 Lab Sample No(s) Customer Sample Ref. S15988 S15988 S15989 S15999 S15999 S15990 S15900 S15900<											
Job:	H_WARDELL_SHF	-37	Customer:				Repo	rt Number:	13553	7	
L	ab Sample No(s)	3515887	3515888	3515891	3515894	3515895	3515897	3515899	3515901	3515902	3515903
	• • • •	WS 101	WS 102	WS 103	WS 104	WS 105	WS 106	WS 107	WS 108	WS 109	WS 110
	Depth										
A 1 1 12 / 10	1,160		SOLID				SOLID				
		01-Jun-2011		02-Jun-2011	01-Jun-2011	01-Jun-2011		01-Jun-2011		01-Jun-2011	01-Jun-2011
2 V /	harial Oana an			20 May 2014		20.142014					20 Mars 2014
v	terial Screen	27 May 2011	27 May 2014	28-Iviay-2011	27 Mars 2011	28-May-2011	27 Mars 2011		28-Iviay-2011		28-10lay-2011
	\	27-May-2011	27-May-2011		27-May-2011		27-May-2011		45 bm 2014	27-May-2011	
	age)										
· · · · ·	UThis suggests	21 May 2011	01 hrs 2011	01 hrs 2011	21 May 2011	01 has 2011	01 hm 2011	01 hm 2011		24 Mars 2011	01 1
		31-Iviay-2011	01-Jun-2011	01-Jun-2011	31-May-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011		31-May-2011	01-Jun-2011
· · · · ·		01 hup 2011	02 hup 2011		01 hm 2011		02 km 2011		17-Jun-2011	02 km 2011	
		01-Jun-2011	02-JUN-2011		01-Jun-2011		02-Jun-2011		22 1 - 2011	02-Jun-2011	
	· · ·			02 him 2011		02 1					
	<u> </u>			02-Jun-2011		02-Jun-2011					
				02 has 2011		02 1 2011					
	J (3)										
				02-Jun-2011		02-JUN-2011					
	<u>۱</u>	02 hun 2011	02 hrs 2011	02 hrs 2011	02 hm 2011	02 1	02 hum 2011	02 hm 2011		02 km 2011	02 1
· · · · · · · · · · · · · · · · · · ·	/	02-Jun-2011	02-Jun-2011	02-Jun-2011	02-Jun-2011	02-JUN-2011	02-JUN-2011	02-Jun-2011		02-Jun-2011	02-Jun-2011
	()										
Mercury Dissolved		04 has 2014	01 h = 2011	02 1	04 hm 2014	02 1 - 2011	01 br 2011	01 1 - 2011	20-Jun-2011	01 bm 2011	02 1 - 2011
Metals by iCap-OES (So	1)	01-Jun-2011	01-Jun-2011	02-Jun-2011	01-Jun-2011	02-Jun-2011	01-Jun-2011	01-Jun-2011	02-Jun-2011		02-Jun-2011
PAH by GCMS	440	02-Jun-2011	02-Jun-2011		02-Jun-2011		02-Jun-2011		04.1.0044	02-Jun-2011	
PAH Spec MS - Aqueous	S (VV)		20.14 2014	02 1 2014		02-Jun-2011			21-Jun-2011 02-Jun-2011		
PCBs by GCMS		04 1 2014	29-May-2011		04 1 0044		04.1.0044	04 1 0044		04 1 0044	04.1.0044
pH		01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011	01-Jun-2011
pH Value		07.14 00.44	07.14 00.44	00.1.0044	07.14 00.44	00.1.0044	07.14	07.14 00.44	20-Jun-2011		00.1.0044
Phenols by HPLC (S)		27-May-2011	27-May-2011	02-Jun-2011	27-May-2011	02-Jun-2011	27-May-2011	27-May-2011	02-Jun-2011	31-May-2011	02-Jun-2011
Phenols by HPLC (W)		24 May 2011	24 May 2014	24 May 2014	24 Mar 2014	24 Mar 2011	24 May 2014	24 May 2014	20-Jun-2011	24 Mars 2011	24 Mars 2014
Sample description		24-May-2011	24-May-2011		31-May-2011	31-May-2011	24-May-2011	24-May-2011		24-May-2011	31-May-2011
Semi Volatile Organic Co	mpounas			01-Jun-2011		01-Jun-2011		31-May-2011	01-Jun-2011 20-Jun-2011		01-Jun-2011
Sulphide		01 hrs 2014			01-Jun-2011			01 hrs 2014	20-JUN-2011	01 brs 2014	01 hrs 2044
Total Organic Carbon		01-Jun-2011	21 Mar 2011	02 hrs 2044		01 hrs 2011	24 Mar 2014	01-Jun-2011	02 10 2011	01-Jun-2011	01-Jun-2011
Total Sulphate			31-May-2011	02-Jun-2011	31-May-2011	01-Jun-2011	31-May-2011 31-May-2011	31-May-2011	02-Jun-2011	31-May-2011 31-May-2011	01-Jun-2011
Total Sulphur TPH CWG (W)		51-Iviay-2011	31-May-2011		31-May-2011		51-Iviay-2011		23-Jun-2011	51-Iviay-2011	
· · ·				02 hrs 2044		02 hrs 2044					
TPH CWG GC (S)				02-Jun-2011		02-Jun-2011			02-Jun-2011		
VOC MS (S)				01-Jun-2011		02-Jun-2011			02-Jun-2011		

CERTIFICATE OF ANALYSIS

SDG	:	110523-40	Location:		Order Number:	SH3068
Job:		H_WARDELL_SHF-37	Customer:	Wardell Armstrong LLP	Report Number:	135537
Clien	t Reference:	SH10534	Attention:	Mike Kelly	Superseded Report:	132894

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	Extraction Method	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	MALE INCO	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	NALE NUMBER OF COLOR	ATROSCAN
ELEMENTALSULPHUR	D&C	DOM	MALEHUXOS	HFLC
PHENOLSBYGOMS	WET	DOM	SDXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (MNOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (OLEANED UP)	D&C	HEXANEADETONE	ENDOWEREND	GCFID
EPH CMG BYGC	D&C	HEXANEACETONE	END OMEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
FOL VAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
08-040(08-040)ez Flash	WET	HEXANEACETONE	SHAMER	GCFZ
POLYAROMATIC Hydrocarbons Rafid GC	WET	HEXANEACETONE	SHARER	GCFZ
SEM VOLATILEORGANIC COMFOUNDS	WET	DOMAGETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIRBAR)	GCMS
BPH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPH CMG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 700 NGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESUPHUR	DOM	SOLID PHASE EXTRACTION	HFLC
PEST COPYOPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRAZINE HEREG	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HFLC
MNERALOIL by R	TCE	LIQUID/LIQUID SHAKE	HFLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Ancale	BrownAsbestos
Ooiddie	BLe Advestos
Fibraus Asingle	-
Florous Anthophylite	-
Fibrous Trendile	-

Wardell Armstrong LLP Unit 4 Newton Business Centre Thorncliffe Park Sheffield South Yorkshire S35 2PH

Attention: James Lymer

CERTIFICATE OF ANALYSIS

Date:	
Customer:	
Sample Delivery Group (SDG):	
Your Reference:	
Location:	
Report No:	

01 June 2011 H_WARDELL_SHF 110521-14 SH10534 131526

We received 2 samples on Friday May 20, 2011 and 2 of these samples were scheduled for analysis which was completed on Wednesday June 01, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

ALcontrol I	Laboratories	CER	TIFICATE OF ANALYS	IS		Validated
SDG: Job: Client Reference:	110521-14 H_WARDELL_SHF-37 SH10534	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 131526	
	CERTIFICATE OF ANALYSIS Certificate of analysis IG: 110521-14 Location: Order Number: SH3068 b: H_WARDELL_SHF-37 Customer: Wardell Armstrong LLP Report Number: 131526 ent Reference: SH10534 Attention: Mike Kelly Superseded Report: 131526 Received Sample Overview					
Lab Sample No(s) Custome	r Sample Ref.	AGS R	ef. Depth (m)	Sampled Date
3508811	V	VS105				19/05/2011

19/05/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

WS110

3508812

Job: H_WAR	Nob: H_WARDELL_SHF-37 Custo Client Reference: SH10534 Atten			Location: Order Number: 7 Customer: Wardell Armstrong LLP Report Number Attention: Mike Kelly Superseded Re						
IQUID Results Legend	Lab Sample		3508811		3508812		Superseued r			
No Determination Possible	Custon Sample Ref		WS105		WS110					
	AGS Refe	erence								
	Depth	(m)								
	Contair	ner	Vial 1lplastic 1l green glass bottle	11 green glass bottle	Vial					
nions by Kone (w)	All	NDPs: 0 Tests: 2	x		x					
Syanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 2	x	X						
vissolved Metals by ICP-MS	All	NDPs: 0 Tests: 2	x		×					
PH CWG (Aliphatic) Aqueous GC W)	All	NDPs: 0 Tests: 2	x	x						
PH CWG (Aromatic) Aqueous GC W)	All	NDPs: 0 Tests: 2	x	x						
ree Sulphur	All	NDPs: 0 Tests: 2	x	X						
GRO by GC-FID (W)	All	NDPs: 0 Tests: 2	x		X					
lexavalent Chromium (w)	All	NDPs: 0 Tests: 2	x		x					
Mercury Dissolved	All	NDPs: 0 Tests: 2	x	x						
Netals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 2	^ X		x					
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 2	x	x						
H Value	All	NDPs: 0 Tests: 2	^ X		×					
Phenols by HPLC (W)	All	NDPs: 0 Tests: 2								
Sulphide	All	NDPs: 0 Tests: 2	X	x						
SVOC MS (W) - Aqueous	All	NDPs: 0 Tests: 2	x		×					

ALcontrol Laboratories CERTIFICATE OF ANALYSIS									
SDG: Job: Client Reference:	110521-14 H_WARDE SH10534	ELL_SHF-37	Location: Customer Attention:	r: Wardell Armstrong LLP			Order Number: Report Number: Superseded Report:	SH3068 131526	
LIQUID Results Legend X Test		Lab Sample	No(s)	3508811	3508812				
No Determin Possible	ation	Customer Sample Reference			WS110				
		AGS Refere	ence						
		Depth (n	n)						
		Containe	ər	Vial 1lplastic 1l green glass bottle	Vial 1lplastic 1l green glass bottle				
TPH CWG (W)		All	NDPs: 0 Tests: 2	x	x				
VOC MS (W)		All	NDPs: 0 Tests: 2	x	x				

CERTIFICATE OF ANALYSIS

Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.infilt Total / unfiltered sample. * Subcontracted lest. * % recovery of the surogate standard to otheck the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery [F] Trigger breach confirmed		to he l	ustomer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	WS105 Water(GW/SW) 19/05/2011 20/05/2011 110521-14 3508811	WS110 Water(GW/SW 19/05/2011 20/05/2011 110521-14 3508812)			
Component		LOD/Units		-0.04	-0.04				
Sulphide		<0.01 mq/l	TM101	<0.01 #	<0.01	#			
Arsenic (diss.filt)		<0.12 µq/l	TM152	0.693 #	0.834	#			
Boron (diss.filt)		<9.4 µg/	1 TM152	59.3	108				
Cadmium (diss.fil	t)	<0.1 µg/	1 TM152	# <0.1	0.102	#			
Chromium (diss.f	ilt)	<0.22	TM152	# 9.8	9.74	#		_	
	,	µq/l		#		#			
Copper (diss.filt)		<0.85 µq/l	TM152	2.43 #	3.8	#			
Lead (diss.filt)		<0.02 µq/l	TM152	0.231 #	0.161	#			
Nickel (diss.filt)		<0 .15	TM152	18.5	8.9				
Selenium (diss.fil	t)	µq/l <0.39	TM152	# 0.842	0.779	#			
Zinc (diss.filt)		µq/l <0.41	TM152	# 13.3	2.09	#			
		µq/l		#		#			
Mercury (diss.filt)		<0.01 µq/l	TM183	<0.01 #	<0.01	#			
Sulphate		<2 mg/l	TM184	147 #	90.4	#			
Cyanide, Total		<0.05	TM227	<0.05	<0.05				
Cyanide, Free		mq/l <0.05	TM227	# <0.05	<0.05	#			
Thiocyanate		mq/l <0.05	TM227	# <0.05	<0.05	#			
-		mq/l		#		#			
Hardness, Total a	is CaCO3	<1 mg/l	TM228	466 #	399	#			
Chromium, Hexa	valent	<0.03 mg/l	TM241	0.035	0.054				
рН		<1 pH	TM256	7.46	7.13				
Phenol		Units <0.002	TM259	# <0.002	<0.002	#			
Cresols		mq/l <0.006	TM259	# <0.006	<0.006	#			
		mq/l		#		#			
Xylenols		<0.008 mg/l	TM259	<0.008 #	<0.008	#			
1-Naphthol		<0.01 mg/l	TM259	<0.01	<0.01				
2,3,5-Trimethylph	enol	<0.003	TM259	<0.003	<0.003				
Phenols, Total De	etected 5	mg/l mg/l	TM259	# <0.013	<0.013	#			
speciated Sulphur, Free		<0.05	TM294	<0.05	<0.05				
		mq/l							
						_			
									+

CERTIFICATE OF ANALYSIS

				CER		FICATE OF A	NALISIS			
SDG Job: Clier	: F	10521-14 I_WARDELL_ 6H10534	_SHF-37	Location: Customer: Attention:		ardell Armstrong LLP ke Kelly		Order Number: Report Number: Superseded Repo	SH3068 131526 rt:	
	Spec MS - Aque									
	Results Legend	.ous (W)	Customer Sample R	WS105		WS110				
# M S diss.filt tot.unfilt * *		nethod. The unds within	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(5) AGS Reference	Water(GW/SW) 19/05/2011 20/05/2011 110521-14 3508811		Water (GW/SW) 19/05/2011 20/05/2011 110521-14 3508812				
Compo		LOD/U				1.00				
Napht	halene (aq)	<0.1	µg/l TM178	<0.1	#	1.22 #				
	phthene (aq)	0.0> ا/pµ		<0.015	#	0.0228 #				
	phthylene (aq)	0.0> /µq		<0.011	#	<0.011 #				
Fluora	inthene (aq)	0.0> /рц		<0.017	#	<0.017 #				
Anthra	acene (aq)	0.0> /µq		<0.015	#	<0.015 #				
Phena	anthrene (aq)	:0.0> //рц		<0.022	#	<0.022 #				
Fluore	ene (aq)	0.0> /µu	14 TM178	<0.014	#	<0.014 #				
Chrys	ene (aq)	0.0> /μq/	13 TM178	<0.013	#	<0.013 #				
Pyren	e (aq)	ν.0.0 μq/	15 TM178	<0.015	#	<0.015 #				
Benzo	o(a)anthracene (aq)		17 TM178	<0.017	#	<0.017 #				
Benzo	(b)fluoranthene (aq		23 TM178	<0.023	#	<0.023 #				
Benzo	o(k)fluoranthene (aq		27 TM178	<0.027	#	<0.027 #				
Benzo	o(a)pyrene (aq)	μq/ 0.0> μq/	09 TM178	<0.009	#	~0.009 #				
Diben: (aq)	zo(a,h)anthracene	ν.0.0> μq/	16 TM178	<0.016	#	<0.016 #				
	o(g,h,i)perylene (aq)		16 TM178	<0.016	#	<0.016 #				
Inden (aq)	o(1,2,3-cd)pyrene	ν.0.0 μq/	14 TM178	<0.014	#	<0.014 #				
PAH,	Total Detected A 16 (ag)	hð		<0.17		1.24				

CERTIFICATE OF ANALYSIS

110521-14 SH3068 SDG: Location: Order Number: Job: H WARDELL SHF-37 Customer: Wardell Armstrong LLP Report Number: 131526 Superseded Report: **Client Reference:** SH10534 Attention: Mike Kelly SVOC MS (W) - Aqueous Customer Sample R WS105 WS110 ISO17025 accredited mCERTS accredited. # M 8 Non-conforming work. Aqueous / settled sample Depth (m) Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Water(GW/SW) Water(GW/SW) diss filt Sample Typ tot unfilt Date Sample 19/05/2011 19/05/2011 20/05/2011 20/05/2011 Date Receive ... SDG Re 110521-14 110521-14 3508811 Lab Sample No.(s) AGS Reference 3508812 Trigger breach confirmed (F) LOD/Units Component Method 1,2,4-Trichlorobenzene TM176 <1 <1 <1 µg/l (aq) 1,2-Dichlorobenzene (aq) <1 µg/l TM176 <1 <1 1.3-Dichlorobenzene (ag) <1 µg/l TM176 <1 <1 1,4-Dichlorobenzene (aq) TM176 <1 <1 <1 µg/l TM176 2,4,5-Trichlorophenol (aq) <1 µg/l <1 <1 2,4,6-Trichlorophenol (aq) <1 µg/l TM176 <1 <1 TM176 2.4-Dichlorophenol (ag) <1 µg/l <1 <1 2,4-Dimethylphenol (aq) <1 µg/l TM176 <1 <1 2,4-Dinitrotoluene (aq) TM176 <1 <1 µg/l <1 2,6-Dinitrotoluene (aq) <1 µg/l TM176 <1 <1 2-Chloronaphthalene (aq) TM176 <1 µa/l <1 <1 2-Chlorophenol (aq) TM176 <1 <1 <1 µg/l 2-Methylnaphthalene (aq) TM176 <1 µg/l <1 <1 2-Methylphenol (aq) TM176 <1 <1 <1 µg/l 2-Nitroaniline (ag) TM176 <1 µg/l <1 <1 2-Nitrophenol (aq) <1 µg/l TM176 <1 <1 TM176 3-Nitroaniline (aq) <1 µg/l <1 <1 4-Bromophenylphenylether <1 µg/l TM176 <1 <1 (ag) 4-Chloro-3-methylphenol TM176 <1 µg/l <1 <1 (aq) 4-Chloroaniline (aq) <1 µg/l TM176 <1 <1 4-Chlorophenylphenylether TM176 <1 µg/l <1 <1 (aq) 4-Methylphenol (aq) TM176 <1 <1 <1 µg/l TM176 4-Nitrophenol (aq) <1 ua/l <1 <1 4-Nitroaniline (aq) <1 µg/l TM176 <1 <1 Azobenzene (aq) TM176 <1 µg/l <1 <1 bis(2-Chloroethyl)ether <1 µg/l TM176 <1 <1 (ag) bis(2-Chloroethoxy)methan TM176 <1 µg/l <1 <1 e (aq) bis(2-Ethylhexyl) phthalate <2 µg/l TM176 <2 <3 (aq) Butylbenzyl phthalate (aq) TM176 <1 µg/l <1 <1 Benzo(k)fluoranthene (aq) <1 µg/l TM176 <1 <1 TM176 Carbazole (aq) <1 µg/l <1 <1 Dibenzofuran (aq) <1 µg/l TM176 <1 <1 n-Dibutyl phthalate (aq) TM176 <1 <1 <1 µa/l Diethyl phthalate (aq) <1 µg/l TM176 <1 <1

Dimethyl phthalate (aq)

<1 µg/l

TM176

<1

<1

CERTIFICATE OF ANALYSIS

Validated

SVOC MS (W) - Aqueous

SVOC MS (W) - Aqueous					 	
Results Legend # ISO17025 accredited. M mCERTS accredited. M mCERTS accredited. S Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. diss.filt Dissolved / filtered sample. * Subcontracted test. * % recovery of the surrogate standar check the efficiency of the method results of individual compounds wit samples aren't corrected for the reo (F) Trigger breach confirmed	d to The thin	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	WS105 Water(GW/SW) 19/05/2011 20/05/2011 11/05/21-14 3508811	WS110 Water(GW/SW) 19/05/2011 20/05/2011 11/05/21-14 3508812		
Component	LOD/Uni	ts Method				
n-Dioctyl phthalate (aq)	<5 µg/	/I TM176	<5	<5		
Hexachlorobenzene (aq)	<1 µg/	/I TM176	<1	<1		
Hexachlorobutadiene (aq)	<1 µg/	/I TM176	<1	<1		
Pentachlorophenol (aq)	<1 µg/	/I TM176	<1	<1		
Phenol (aq)	<1 µg	/I TM176	<1	<1		
n-Nitroso-n-dipropylamine (aq)	<1 µg/	/I TM176	<1	<1		
Hexachloroethane (aq)	<1 µg/	/I TM176	<1	<1		
Nitrobenzene (aq)	<1 µg/	/I TM176	<1	<1		
Isophorone (aq)	<1 µg/	/I TM176	<1	<1		
Hexachlorocyclopentadien e (aq)	<1 µg	/I TM176	<1	<1		
Indeno(1,2,3-cd)pyrene	<1 µg	/I TM176	<1	<1		
(aq) SVOC TIC (aq)	-	TM176	No TICs identified	No TICs identified		
		_				
		_				

CERTIFICATE OF ANALYSIS

	Labola	toriot	,	CER	TIFICATE OF A	NALYSIS	L	Valuated	
SDG:	110521			Location:		Order Number:	SH3068		
Job: Client Reference:	H_WAF SH105		SHF-37		Wardell Armstrong LLF Mike Kelly	P Report Number: Superseded Report:	131526		
TPH CWG (W)					,	· · ·			
Results Lege # ISO17025 accredited.	end		Customer Sample R	WS105	WS110				
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sam diss.filt Dissolved / filtered sam toLunfilt Total / unfiltered samp * Subcontracted test. * % recovery of the sum check the efficiency of results of individual oc samples aren't correct	iple. mple. le. ogate standard f the method. Th ompounds with ted for the recov	he in	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	Water(GW/SW) 19/05/2011 20/05/2011 11/0521-14 3508811	Water(GW/SW) 19/05/2011 20/05/2011 110521-14 3508812				
(F) Trigger breach confirm Component	ned	LOD/U	nits Method						
GRO Surrogate %		%		90	91				
recovery** GRO >C5-C12		<50	ıq/I TM245	<50	§ § <50				
Methyl tertiary butyl et	ther	<3 µ	-	<3	§ § <3				
(MTBE) Benzene		<7 µ	g/I TM245	<7	<u>§</u> § <7				
Toluene		<4 µ	g/l TM245	<4	§ § <4			_	
Ethylbenzene		<5 µ	- -		<u>§</u> <5				
			-		§ §				
m,p-Xylene		<8 µ <3 µ	-	<8	<8 § § <3				
		< 5 H	<u> </u>		§ §				
Sum of detected Xyler	nes	μg	1 TM245	none detected	none detected § §				
Sum of detected BTE	x	hð	1 TM245	none detected	none detected				
Aliphatics >C5-C6		<10	ıg/I TM245	<10	<10 § §				
Aliphatics >C6-C8		<10	ıg/I TM245	<10	<10 § §				
Aliphatics >C8-C10		<10	ıg/I TM245	<10	<10 § §				
Aliphatics >C10-C12		<10	ıg/I TM245	<10	<10 § § §				
Aliphatics >C12-C16 ((aq)	<10	ıg/I TM174	<10	<10				
Aliphatics >C16-C21 ((aq)	<10	ıg/l TM174	<10	<10				
Aliphatics >C21-C35 ((aq)	<10	ıg/l TM174	<10	<10				
Total Aliphatics >C12- (ag)	-C35	<10	ıg/l TM174	<10	<10				
Aromatics >EC5-EC7		<10	ıg/I TM245	<10	<10 § §				
Aromatics >EC7-EC8		<10	ıg/I TM245	<10	<10 § §				
Aromatics >EC8-EC1	0	<10	ıg/I TM245	<10	<10 § §				
Aromatics >EC10-EC		<10	-		<10 § §				
Aromatics >EC12-EC (aq)		<10	-	<10	<10				
Aromatics >EC16-EC2 (aq)	21	<10	ıg/I TM174	<10	<10				
Aromatics >EC21-EC (aq)	35	<10		<10	17				
Total Aromatics >EC12-EC35 (aq)		<10		<10	17				
Total Aliphatics & Aromatics >C5-35 (ag	1)	<10	ıg/I TM174	<10	18				

CERTIFICATE OF ANALYSIS

Validated

			CERI	IFICATE OF A	INAL 1515			
	21-14 ARDELL_SH)534	F-37		Vardell Armstrong LLF /like Kelly	, R e	rder Number: eport Number: uperseded Report:	SH3068 131526	
VOC MS (W)								
Results Legend	Cu	stomer Sample R	WS105	WS110				
# ISO17025 accredited. M mCERTS accredited.								
§ Non-conforming work. aq Aqueous / settled sample.		Depth (m)						
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Water(GW/SW) 19/05/2011	Water(GW/SW) 19/05/2011				
* Subcontracted test. ** % recovery of the surrogate stands	ard to	Date Received	20/05/2011 110521-14	20/05/2011 110521-14				
check the efficiency of the method results of individual compounds w	The .	SDG Ref ab Sample No.(s)	3508811	3508812				
samples aren't corrected for the re (F) Trigger breach confirmed	covery	AGS Reference						
Component	LOD/Units	Method						
Dibromofluoromethane**	%	TM208	106	106				
Toluene-d8**	%	TM208	99.7	97.8				
4-Bromofluorobenzene**	%	TM208	96	91.2				
Dichlorodifluoromethane	<7 µg/l	TM208	<7	<7 # #				
Chloromethane	<9 µg/l	TM208	<9	<9 # #				
Vinyl chloride	<1.2 µg/l	TM208	<1.2	<1.2 # #				
Bromomethane	<2 µg/l	TM208		<2 # #				
Chloroethane	<2.5 µg/l	TM208		<2.5 # #				
Trichlorofluoromethane	<1.3 µg/l	TM208 TM208	<1.3 <1.2	<1.3 # <1.2				
Carbon disulphide	<1.2 µg/l			# # <1.3				
Dichloromethane	<3.7 µg/l			# #				
Methyl tertiary butyl ether	<1.6 µg/l		<1.6	# # <1.6				
(MTBE) trans-1,2-Dichloroethene	<1.9 µg/l	TM208	<1.9	# # <1.9				
1,1-Dichloroethane	<1.2 µg/l	TM208	<1.2	# # <1.2				
cis-1,2-Dichloroethene	<2.3 µg/l	TM208	<2.3	# # <2.3 # #				
2,2-Dichloropropane	<3.8 µg/l	TM208	<3.8	<pre>// // // // // // // // // // // // //</pre>				
Bromochloromethane	<1.9 µg/l		<1.9	<1.9 # #				
Chloroform	<1.8 µg/l			<1.8 # #				
1,1,1-Trichloroethane	<1.3 µg/l			<1.3 # #				
1,1-Dichloropropene	<1.3 µg/l			<1.3 #				
Carbontetrachloride	<1.4 μg/l <3.3 μg/l		<1.4 <3.3	<1.4 # # <3.3				
Benzene	<1.3 µg/l		<1.3	<1.3				
Trichloroethene	<2.5 µg/l			# # <2.5				
1,2-Dichloropropane	<3 µg/l	TM208		# # <3				
Dibromomethane	<2.7 µg/l	TM208	<2.7	# # <2.7				
Bromodichloromethane	<0.9 µg/l	TM208	<0.9	# # <0.9				
cis-1,3-Dichloropropene	<1.9 µg/l	TM208	<1.9	# # <1.9 # #				
Toluene	<1.4 µg/l	TM208	<1.4	# # 1.44 # #				
trans-1,3-Dichloropropene	<3.5 µg/l	TM208	<3.5	* * * <3.5 # #				
1,1,2-Trichloroethane	<2.2 µg/l	TM208	<2.2	,				
1,3-Dichloropropane	<2.2 µg/l			<2.2 # #				
Tetrachloroethene	<1.5 µg/l			<1.5 # #				
Dibromochloromethane	<1.7 µg/l	TM208	<1.7	<1.7 # #				

#

#

CERTIFICATE OF ANALYSIS

VOC MS (W)

VOC MS (W)						
Results Legend # ISO17025 accredited.	C	ustomer Sample R	WS105	WS110		
M mCERTS accredited. § Non-conforming work.		Depth (m)				
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled Date Received	19/05/2011 20/05/2011	19/05/2011 20/05/2011		
** % recovery of the surrogate standar check the efficiency of the method.	The	SDG Ref	110521-14 3508811	110521-14 3508812		
results of individual compounds wi samples aren't corrected for the rec	thin	Lab Sample No.(s) AGS Reference	3300011	3300012		
(F) Trigger breach confirmed	LOD/Units	Mothod				
Component 1,2-Dibromoethane	<2.3 µg/	_	<2.3	<2.3		
			#	#		
Chlorobenzene	<3.5 µg/	1 TM208	<3.5 #	<3.5 #		
1,1,1,2-Tetrachloroethane	<1.3 µg/	1 TM208	<1.3	<1.3		
Etherite and a	-0.5		#	#	 	
Ethylbenzene	<2.5 µg/	/I TM208	<2.5 #	<2.5 #		
m,p-Xylene	<2.5 µg/	I TM208	<2.5	<2.5		
o-Xylene	<1.7 µg/	1 TM208	# <1.7	# <1.7		
			#	#		
Styrene	<1.2 µg/	1 TM208	<1.2 #	<1.2 #		
Bromoform	<3 µg/l	TM208	<3	<3		
			#	#		
Isopropylbenzene	<1.4 µg/	1 TM208	<1.4	<1.4 #		
1,1,2,2-Tetrachloroethane	<5.2 µg/	1 TM208	<5.2	<5.2		
1.2.2 Trichloropropago	<7.9 μα	1 TM208	<7.8	<7.8		
1,2,3-Trichloropropane	<7.8 µg/		<7.0	<7.0 #		
Bromobenzene	<2 µg/I	TM208	<2	<2		
Propylbenzene	<2.6 µg/	1 TM208	# <2.6	# <2.6		
Topybenzene	<2.0 μg/	1 110200	×2.0 #	~2.0 #		
2-Chlorotoluene	<1.9 µg/	1 TM208	<1.9	<1.9		
1,3,5-Trimethylbenzene	<1.8 µg/	1 TM208	# <1.8	# <1.8		
			#	#		
4-Chlorotoluene	<1.9 µg/	1 TM208	<1.9 #	<1.9 #		
tert-Butylbenzene	<2 µg/I	TM208	<2	<2		
1,2,4-Trimethylbenzene	<1.7 µg/	1 TM208	# <1.7	# <1.7		
1,2,4-mineuryibenzene	<1.7 µg/		<1.7	<1.7 #		
sec-Butylbenzene	<1.7 µg/	1 TM208	<1.7	<1.7		
4-iso-Propyltoluene	<2.6 µg/	1 TM208	# <2.6	# <2.6		
			#	#		
1,3-Dichlorobenzene	<2.2 µg/	1 TM208	<2.2 #	<2.2 #		
1,4-Dichlorobenzene	<2.7 µg/	1 TM208	<2.7	<2.7		
- Dut the server	.0	T1 1000	#	#	 	
n-Butylbenzene	<2 µg/l	TM208	<2 #	<2 #		
1,2-Dichlorobenzene	<3.7 µg/	I TM208	<3.7	<3.7		
1,2-Dibromo-3-chloropropa	<9.8 µg/	1 TM208	<9.8	<9.8		
ne						
1,2,4-Trichlorobenzene	<2.3 µg/	1 TM208	<2.3 #	<2.3 #		
Hexachlorobutadiene	<2.5 µg/	1 TM208	<2.5	# <2.5		
			#	#		
tert-Amyl methyl ether (TAME)	<1 µg/I	TM208	<1 #	<1 #		
Naphthalene	<3.5 µg/	I TM208	<3.5	<3.5		
1,2,3-Trichlorobenzene	<3.1 µg/	1 TM208	# <3.1	# <3.1		
1,2,0-1101000012010	<о.тµу/		<3.1	<3.1 #		
1,3,5-Trichlorobenzene	<10 µg/	1 TM208	<10	<10		
VOC TIC	-	TM208	No TICs identified	No TICs identified		
Total Xylenes	µg/I	TM208	<5	<5		

CERTIFICATE OF ANALYSIS

Validated

SDG: Job: Client Reference:	110521-14 H_WARDELL_SHF-37 SH10534	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 131526				
	Notification of Non Conforming Work								

Notification	of Non-0	Conform	ing Worl	K
--------------	----------	---------	----------	---

Sample	Customer Sample Ref	Depth (m) Matrix	Test Name	Component Name	Comment
Number 3508816	Sample Ref. WS105	LIQUID	GRO by GC-FID (W)	Aliphatics >C10-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aliphatics >C5-C6	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aliphatics >C6-C8	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aliphatics >C8-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aromatics >EC10-EC12	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aromatics >EC5-EC7	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aromatics >EC7-EC8	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Aromatics >EC8-EC10	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Benzene	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	EPH (C6-C10)	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	EPH (C6-C10) mg/l	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Ethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C10-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C5-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C5-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C5-C6	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C6-C7	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C6-C8	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C7-C8	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO >C8-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO QC	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	GRO Surrogate % recovery**	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	m,p-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105	LIQUID	GRO by GC-FID (W)	Methyl tertiary butyl ether (MTBE)	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

Validated

ש				CERTIFICATE OF AN	IALYSIS	
SDG: Job: Client Refere		DELL_SHF-37	Locat Custo Attent	mer: Wardell Armstrong LLP	Order Number: Report Number: Superseded Report	SH3068 131526 :
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 3508816	Sample Ref. WS105		LIQUID	GRO by GC-FID (W)	o-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	QC raw	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	Sum of detected BTEX	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	Sum of detected Xylenes	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	tert-Amyl methyl ether (TAME)	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	Toluene	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	Total Aliphatics >C5-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	Total Aromatics >EC5-EC12	Volatile Analysis performed on vessel with headspace due testing requirement
3508816	WS105		LIQUID	GRO by GC-FID (W)	Trace	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aliphatics >C10-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aliphatics >C5-C6	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aliphatics >C6-C8	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aliphatics >C8-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aromatics >EC10-EC12	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aromatics >EC5-EC7	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aromatics >EC7-EC8	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Aromatics >EC8-EC10	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Benzene	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	EPH (C6-C10)	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	EPH (C6-C10) mg/l	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	Ethylbenzene	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	GRO >C10-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	GRO >C5-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	GRO >C5-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3508823	WS110		LIQUID	GRO by GC-FID (W)	GRO >C5-C6	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

Validated

ש				CER			
SDG: Job: Client Reference:	_	DELL_SHF-37	Cust	ation: comer: ntion:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report	SH3068 131526 :
	Customer ample Ref.	Depth (m)	Matrix		Test Name	Component Name	Comment
3508823	WS110		LIQUID	GR	O by GC-FID (W)	GRO >C6-C7	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	GRO >C6-C8	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	GRO >C7-C8	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	GRO >C8-C10	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	GRO QC	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	GRO Surrogate % recovery**	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	m,p-Xylene	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Methyl tertiary butyl ether (MTBE)	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	o-Xylene	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	QC raw	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Sum of detected BTEX	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Sum of detected Xylenes	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	tert-Amyl methyl ether (TAME)	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Toluene	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Total Aliphatics >C5-C12	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Total Aromatics >EC5-EC12	Volatile Analysis performed on vessel with headspace due testin requirement
3508823	WS110		LIQUID	GR	O by GC-FID (W)	Trace	Volatile Analysis performed on vessel with headspace due testin requirement

Note : Test results may be invalid

CERTIFICATE	OF ANALYSIS
-------------	--------------------

Validated

Client Reference: SH10534 Attention: Mike Kelly Superseded Report:		110521-14 H_WARDELL_SHF-37 SH10534	Location: Customer: Attention:	Wardell Armstrong LLP Mike Kelly	Order Number: Report Number: Superseded Report:	SH3068 131526
--	--	--	--------------------------------------	-------------------------------------	---	------------------

Table of Results - Appendix

DP FD Metho	No Determination No Fibres Detection limits	ted	# PFD due to vario	ISO 17025 Accredited Possible Fibres Detected us circumstances beyond our c	control	* »	Subcontracted Test Result previously reported (Incremental reports only)	M EC	MCERTS Accred Equivalent Carbo (Aromatics C8-C	on
	lethod No		Refer				Description		Wet/Dry Sample 1	Surroga Correct
	TM061	Method for the De EPH,Massachuse			Determina GC-FID (0		xtractable Petroleum Hydroca	rbons by		
	TM101	Method 4500B & 0 1999	, awwa	APHA, 20th Ed.,	Determina Kone Ana		ulphide in soil and water samp	les using the		
	TM152	Method 3125B, AV	WA/APH	IA, 20th Ed., 1999		-	is Samples by ICP-MS			
	TM174	Analysis of Petrole Environmental Me Hydrocarbon Crite	dia – Ťota				peciated Extractable Petroleu /aters by GC-FID	n		
	TM176	EPA 8270D Semi- by Gas Chromatog (GC/MS)		rganic Compounds iss Spectrometry	Determina	ation of S	VOCs in Water by GCMS			
	TM178	Modified: US EPA	Method 8	100	Determina GC-MS in		olynuclear Aromatic Hydrocar	bons (PAH) by		
	TM183	BS EN 23506:200 0 580 38924 3	2, (BS 60	68-2.74:2002) ISBN			race Level Mercury in Waters ur Atomic Fluorescence Spec			
	TM184	EPA Methods 325	1 & 325.2	2,			of Anions in Aqueous Matrice ometric Analysers	s using the		
	TM208	Modified: US EPA	Method 8	260b & 624	Determina GC-MS in		olatile Organic Compounds by	Headspace /		
	TM227	Standard methods and wastewaters 2 Method 4500.		amination of waters n, AWWA/APHA	Determina Cyanide a		otal Cyanide, Free (Easily Libe yanate	eratable)		
	TM228	US EPA Method 6	010B		Determina ICP-OES	ation of M	lajor Cations in Water by iCap	6500 Duo		
	TM241	Methods for the Ex Associated Materia Potable Waters an	als; Chron	nium in Raw and			of Hexavalent Chromium in W e Kone Analyser	aters and		
	TM245	By GC-FID			Determina	ation of G	RO by Headspace in waters			
	TM256	The measurement the Laboratory det Natural, Treated a 1978. ISBN 011 75	erminatio nd Waste	· · · ·	Determina Meter	ation of p	H in Water and Leachate using	g the GLpH pH		
	TM259	by HPLC			Determina	ation of P	henols in Waters and Leachat	es by HPLC		
	TM294									

NA = not applicable.

CERTIFICATE OF ANALYSIS

Validated

SDG:	110521-14	Location:		Order Number:	SH3068
Job:	H_WARDELL_SHF-37	Customer:	Wardell Armstrong LLP	Report Number:	131526
Client Reference:	SH10534	Attention:	Mike Kelly	Superseded Report:	

Test Completion Dates

Lab Sample No(s)	3508811	3508812
Customer Sample Ref.	WS105	WS110
AGS Ref.		
Depth		
Туре	LIQUID	LIQUID
Anions by Kone (w)	27-May-2011	27-May-2011
Cyanide Comp/Free/Total/Thiocyanate	27-May-2011	27-May-2011
Dissolved Metals by ICP-MS	25-May-2011	25-May-2011
EPH CWG (Aliphatic) Aqueous GC (W)	31-May-2011	31-May-2011
EPH CWG (Aromatic) Aqueous GC (W)	31-May-2011	31-May-2011
Free Sulphur	01-Jun-2011	01-Jun-2011
GRO by GC-FID (W)	28-May-2011	28-May-2011
Hexavalent Chromium (w)	24-May-2011	24-May-2011
Mercury Dissolved	25-May-2011	25-May-2011
Metals by iCap-OES Dissolved (W)	25-May-2011	25-May-2011
PAH Spec MS - Aqueous (W)	31-May-2011	26-May-2011
pH Value	24-May-2011	24-May-2011
Phenols by HPLC (W)	25-May-2011	25-May-2011
Sulphide	01-Jun-2011	01-Jun-2011
SVOC MS (W) - Aqueous	28-May-2011	28-May-2011
TPH CWG (W)	31-May-2011	31-May-2011
VOC MS (W)	26-May-2011	26-May-2011

CERTIFICATE OF ANALYSIS

SDG:	110521-14	Location:	
Job:	H_WARDELL_SHF-37	Customer:	Wardell Armstrong LLP
Client Reference:	SH10534	Attention:	Mike Kelly

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: Superseded Report: SH3068 131526

SOLID MATRICES EXTRACTION SUMMARY

	D/C OR	EXTRACTION	EXTRACTION			
ANALYSIS	WET	SOLVENT	METHOD	ANALYSIS		
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC		
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC		
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHEFTM	IATROSCAN		
ELEMENTALSULPHUR	D&C	DOM	MFEHTX CZ	HFLC		
PHENOLSBYGOMS	WET	DOM	SDXTHERM	GCMS		
HEREICODES	D&C	HEXANEACETONE	SDXTHERM	GCMS		
PESIICDES	D&C	HEXANEACETONE	SOXTHERM	GCMS		
ETH (DRO)	D&C	HEXANEACETONE	ENDOWEREND	GCFID		
EFH (MNOL)	D&C	HEXANEACETONE	END OVEREND	GCFID		
EPH (OLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID		
EPH CANG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID		
POB TOT / POB CON	D&C	HEXANEACETONE	ENDOWEREND	GCMS		
POLVAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS		
08-040(08-040) EZ FLASH	WET	HEXANEACETONE	SHAMER	GCÆZ		
POLYAROMATIC Hydrocarbons Rafid GC	WET	HEXANEACETONE	SHAMER	GCEZ		
SEM VOLATILEORGANIC COMFOUNDS	WET	DOMAGETONE	SONICATE	GCMS		

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BHI	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHONG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MNERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFD
POB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POBITOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HFLC
PEST 00P/0PP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRAZINE HERES	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLD PHASE EXTRACTION	GCMS
THH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HFLC
MINERALCIL by R	TCE	LIQUID/LIQUID SHAKE	HFLC
GLYCOLS	NONE	DIRECT NECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Orrysolie	WhiteAsbestos
Ancele	BrownAsbestos
Qoádate	Bije Astestos
Fibraus Adinalie	-
Rorous Anthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Wardell Armstrong LLP Unit 4 Newton Business Centre Thorncliffe Park Sheffield South Yorkshire S35 2PH

Attention: Joanne Shaw

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 13 June 2011 H_WARDELL_SHF 110602-86 SH10534 North Bierley 133631

We received 3 samples on Thursday June 02, 2011 and 3 of these samples were scheduled for analysis which was completed on Monday June 13, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

ALcontrol Laboratories									
SDG: Job: Client Reference:	110602-86 H_WARDELL_SHF-38 SH10534	Location: Customer: Attention:	North Bierley Wardell Armstrong LLP Joanne Shaw	Ore	der Number: port Number: perseded Report:	SH3068 133631			
		Receiv	ved Sample Ov	erview					
Lab Sample No(s	s) Customer	Sample Ref.	AG	S Ref.	Depth (m)		Sampled Date		
3589940	E	BH5					01/06/2011		
3589941	E	BH6					01/06/2011		

01/06/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

WS102

3589939

SDG: 110602- Job: H_WAR Client Reference: SH1053	DELL_SHF-38	Location: Custome Attention	r: Wa	orth B ardell anne	Arms	ong LLP Order Number: Superseded Rep	
IQUID esults Legend X Test	Lab Sample	No(s)	3589940	3589941	3589939		
No Determination Possible	Custome Sample Refe	BH5	BH6	WS102			
	AGS Refere	ence					
	Depth (n	-					
	Containe	er	Vial 1lplastic 1l green glass bottle	Vial 1l green glass bottle	Vial 1l green glass bottle		
Anions by Kone (w)	All	NDPs: 0 Tests: 2	x	x			
yanide omp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 2	x	x			
issolved Metals by ICP-MS	All	NDPs: 0 Tests: 2	x	x			
PH CWG (Aliphatic) Aqueous GC W)	All	NDPs: 1 Tests: 2	x	X	N		
EPH CWG (Aromatic) Aqueous GC W)	All	NDPs: 1 Tests: 2	x	x	N		
ree Sulphur	All	NDPs: 0 Tests: 2	x	X			
GRO by GC-FID (W)	All	NDPs: 0 Tests: 3	x	x	x		
Hexavalent Chromium (w)	All	NDPs: 0 Tests: 2	x	x			
Mercury Dissolved	All	NDPs: 0 Tests: 2	x	x			
Metals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 2	x	x			
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 2	x	X			
oH Value	All	NDPs: 0 Tests: 2	x	X			
Phenols by HPLC (W)	All	NDPs: 0 Tests: 2	X	X			
Sulphide	All	NDPs: 0 Tests: 2	x	x			
SVOC MS (W) - Aqueous	All	NDPs: 0 Tests: 3			x		

ALcontrol I							OF ANALYSIS		
SDG: Job: Client Reference:	110602-86 H_WARD SH10534	S ELL_SHF-38	Location: Customer Attention:	n Wa	rth B ardell anne	Arm	trong LLP Order Numb Superseded	ber: 133631	
LIQUID				ω	ω	ω			
Results Legend		Lab Sample I	No(s)	3589940	3589941	3589939			
No Determination Possible		Customer Sample Refere		BH5	BH6	WS102			
		AGS Refere	nce						
		Depth (m)						
	Contair		r	Vial 1lplastic 1l green glass bottle	Vial 11 green glass bottle	Vial 1l green glass bottle			
TPH CWG (W)		All	NDPs: 1 Tests: 2	x	x	N			
VOC MS (W)		All	NDPs: 0 Tests: 2	x	x				

CERTIFICATE OF ANALYSIS

Validated

ISO17025 accredited. M mCERTS accredited. S Non-conforming work. aq Aqueous / settled sample. diss.fitt Dissolved / filtered sample. to.unfilt Total / unfiltered sample. * Subcontracted test. * Subcontracted test. * % recovery of the surrogate standar check the efficiency of the method.	TS accredited. snforming work. Us / settled sample. Us / settled sample. Unfiltered sample. Unfiltered sample. Date Sampled Intracted test. Date Received Wayr of the surrogate standard to SDG Ref		Depth (m) Sample Type Water(GW/SW) Date Sampled 01/06/2011 Date Received 02/06/2011 SDG Ref 110602-86 Lab Sample No.(s) 3589940				
results of individual compounds wit samples aren't corrected for the rec (F) Trigger breach confirmed		AGS Reference		3589941			
Component Sulphide	LOD/Units <0.01	Method TM101	<0.1	<0.25	_		
	mg/l		#		#		
Arsenic (diss.filt)	<0.12 µq/l	TM152	3.08 #	2.31	#		
Boron (diss.filt)	<9.4 µg/l	TM152	69.8 #	56.3	#		
Cadmium (diss.filt)	<0.1 µg/l	TM152	<0.1 #	0.346	#		
Chromium (diss.filt)	<0.22 µg/l	TM152	29.1 #	6.14	#		
Copper (diss.filt)	<0.85 µg/l	TM152	7.35 #	2.66	#		
Lead (diss.filt)	<0.02	TM152	0.065	0.146			
Nickel (diss.filt)	µq/l <0.15	TM152	# 11.5	50.2	#		
Selenium (diss.filt)	µq/l <0.39	TM152	# 2.66	4.44	#		
Zinc (diss.filt)	µq/l <0.41	TM152	# 2.54	10.5	#		
Mercury (diss.filt)	µq/l <0.01	TM183	# <0.01	<0.01	#		
Sulphate	µq/l <2 mg/l	TM184	# 71.4	884	#		
	<0.05	TM227	<0.05	<0.05	#		
Cyanide, Total	mg/l		#		#		
Cyanide, Free	<0.05 mg/l	TM227	<0.05 #	<0.05	#		
Thiocyanate	<0.05 mg/l	TM227	<0.05 #	<0.05	#		
Hardness, Total as CaCO3	<1 mg/l	TM228	502 #	1220	#		
Chromium, Hexavalent	<0.03 mg/l	TM241	<0.03	<0.03			
рН	<1 pH Units	TM256	8.43 #	7.99	#		
Phenol	<0.002	TM259	<0.002	<0.002			
Cresols	mq/l <0.006	TM259	# <0.006	<0.006	#		
Xylenols	mq/l <0.008	TM259	# <0.008	<0.008	#		
1-Naphthol	mq/l <0.01	TM259	# <0.01	<0.01	#		
2,3,5-Trimethylphenol	mq/l <0.003	TM259	<0.003	<0.003	-		
Phenols, Total Detected 5	mq/l mg/l	TM259	# none detected	none detected	#		
speciated Sulphur, Free	<0.05	TM294	<0.05	<0.188			
	<0.03 mg/l	111/2.54	<0.05	<0.100			
					-		
					-		
					_		
					_		

	aboratories	6	CER	TIFIC		YSIS		Γ	Validated
Job:	110602-86 H_WARDELL SH10534	_SHF-38		North Bi Wardell Joanne	Armstrong LLP		Order Number: Report Number: Superseded Repor	SH3068 133631	
GRO by GC-FID (W			Attention.	Juanne	Shaw		Superseule Repor		
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample diss.filt Dissolved / filtered sample. * Subcontracted test. * Subcontracted test. * Subcontracted test. * Subcontracted test. (F) Trigger breach confirmed	e. etandard to e. method. The sounds within for the recovery	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	WS102 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589939						
Component GRO Surrogate %	LOD/U		96						
recovery** GRO >C5-C12	<50	µg/I TM245	<50	_					
Methyl tertiary butyl ethe			<3	#					
(MTBE) Benzene	<7	ıg/I TM245	<7	#					
Toluene	<4	ıg/I TM245	<4	#					
Ethylbenzene	<5	ıg/I TM245	<5	#					
m,p-Xylene	<8	ıg/I TM245	<8	#					
o-Xylene	<3	ıg/I TM245	<3	#					
Sum of detected Xylene	s µg	/I TM245	none detected						
Sum of detected BTEX	hð	/I TM245	none detected						
Aliphatics >C5-C6	<10	µg/I TM245	<10						
Aliphatics >C6-C8	<10	µg/I TM245	<10						
Aliphatics >C8-C10	<10	µg/I TM245	<10						
Aliphatics >C10-C12	<10	µg/I TM245	<10						
Aromatics >EC5-EC7	<10	µg/I TM245	<10						
Aromatics >EC7-EC8	<10	µg/I TM245	<10						
Aromatics >EC8-EC10	<10		<10						
Aromatics >EC10-EC12	<10	µg/I TM245	<10						

CERTIFICATE OF ANALYSIS

				CERI	TIFI	CATE OF A	NALYSIS			
SDG Job:	1	110602-86 H_WARDELL	_SHF-38	Customer:	Ward	n Bierley dell Armstrong LLP		Order Number: Report Number:	SH3068 133631	
	nt Reference:	SH10534		Attention:	Joan	ne Shaw		Superseded Repo	n:	
	Spec MS - Aq Results Legend	ueous (w)	Customer Sample R	BH5		BH6				
# M aq diss.filt tot.unfilt * **	ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample Dissolved / lunfiltered sample. Subcontracted test. % recovery of the surrog check the efficiency of th results of individual com samples aren't corrected Trigger breach confirmed	le. ate standard to e method. The pounds within for the recovery	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589940		Water(GW/SW) 01/06/2011 02/06/2011 110602-66 3589941				
Compo		LOD/U								
Napht	halene (aq)	<0.1	µg/I TM178	0.383	#	<0.1 #				
Acena	aphthene (aq)	0.0> /µq/		0.562	#	0.079 #				
Acena	phthylene (aq)	<0.0		0.0318	#	<0.011 #				
Fluora	inthene (aq)	μαμ 0.0> γμαμ)17 TM178	2.91	#	0.268 #				
Anthra	acene (aq)	0.0> иди)15 TM178	0.416	#	0.08 #				
Phena	anthrene (aq)	0.0> ирц)22 TM178	1.02	#	0.351 #				
Fluore	ene (aq)	0.0> μq)14 TM178	0.287	#	0.0599 #				
Chrys	ene (aq)	0.0> μq)13 TM178	1.75	#	0.0547 #				
Pyren	e (aq)	0.0> /µq/)15 TM178	2.75	#	0.225 #				
Benzo	o(a)anthracene (a)17 TM178	1.89	#	0.0519 #				
Benzo	o(b)fluoranthene (a)23 TM178	1.84	#	0.0402 #				
Benzo	o(k)fluoranthene (a		27 TM178	2.34	#	0.0393 #				
Benzo	o(a)pyrene (aq)	0.0> иди	009 TM178	2.55	#	0.0414 #				
Diben: (aq)	zo(a,h)anthracene)16 TM178	0.369	#	<0.016 #				
Benzo	o(g,h,i)perylene (a	0.0> (р µq/		1.2	#	0.0221 #				
Inden (aq)	o(1,2,3-cd)pyrene	0.0> иди		1.06	#	0.016 #				
	Total Detected A 16 (ag)	μg	µ/I TM178	21.4		1.33				

CERTIFICATE OF ANALYSIS

Validated

SVOC MS (W) - Aqueous

SVOC MS (W) - Aqueous Results Legend		ustomer Sample R	BUE	BUG	W6402	 	
ISO17025 accredited. M mCERTS accredited. M mCERTS accredited. Son-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / fittered sample. tot.unfit Total / unfittered sample. Subcontracted test. W recovery of the surrogate standarcheck the efficiency of the method. results of individual compounds will	rd to The thin	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s)	BH5 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589940	BH6 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589941	WS102 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589939		
samples aren't corrected for the rec (F) Trigger breach confirmed	-	AGS Reference					
Component 1,2,4-Trichlorobenzene	LOD/Units <1 µg/l		<1	<1	<1	 	
(aq) 1,2-Dichlorobenzene (aq)	<1 µg/l		<1	<1	<1	 	
1,3-Dichlorobenzene (aq)	<1 µg/l		<1	<1	<1		
1,4-Dichlorobenzene (aq)	<1 µg/l		<1	<1	<1		
2,4,5-Trichlorophenol (aq)	<1 µg/l		<1	<1	<1		
2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176	<1	<1	<1		
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<1	<1	<1		
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1	<1	<1		
2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	<1	<1		
2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	<1	<1		
2-Chloronaphthalene (aq)	<1 µg/l	TM176	<1	<1	<1		
2-Chlorophenol (aq)	<1 µg/l	TM176	<1	<1	<1		
2-Methylnaphthalene (aq)	<1 µg/l	TM176	<1	<1	<1		
2-Methylphenol (aq)	<1 µg/l	TM176	<1	<1	<1		
2-Nitroaniline (aq)	<1 µg/l	TM176	<1	<1	<1		
2-Nitrophenol (aq)	<1 µg/I	TM176	<1	<1	<1		
3-Nitroaniline (aq)	<1 µg/l	TM176	<1	<1	<1		
4-Bromophenylphenylether (aq)	<1 µg/l	TM176	<1	<1	<1		
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1	<1	<1		
4-Chloroaniline (aq)	<1 µg/l	TM176	<1	<1	<1		
4-Chlorophenylphenylether (ag)	<1 µg/l	TM176	<1	<1	<1		
4-Methylphenol (aq)	<1 µg/l	TM176	<1	<1	<1		
4-Nitrophenol (aq)	<1 µg/l	TM176	<1	<1	<1		
4-Nitroaniline (aq)	<1 µg/l	TM176	<1	<1	<1		
Azobenzene (aq)	<1 µg/l	TM176	<1	<1	<1		
Acenaphthylene (aq)	<1 µg/l	TM176	<1	<1	<1		
Acenaphthene (aq)	<1 µg/l		<1	<1	<1		
Anthracene (aq)	<1 µg/l		<1	<1	<1		
bis(2-Chloroethyl)ether (aq)	<1 µg/l		<1	<1	<1		
bis(2-Chloroethoxy)methan e (aq)	<1 µg/l		<1	<1	<1		
bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l		8.11	3.92	<2		
Benzo(a)anthracene (aq)	<1 µg/l		<1	<1	<1		
Butylbenzyl phthalate (aq)	<1 µg/l		<1	<1	<1		
Benzo(b)fluoranthene (aq)	<1 µg/l		<1	<1	<1		
Benzo(k)fluoranthene (aq)	<1 µg/l	TM176	<1	<1	<1		

CERTIFICATE OF ANALYSIS

Validated

SVOC MS (W) - Aqueous

SVOC MS (W) - Aqueous						 	
Results Legend ISO17025 accredited. M mCERTs accredited. M mCERTs accredited. Son-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / fittered sample. totunfit Total / unfittered sample. Subcontracted test. W recovery of the surrogate stands check the efficiency of the method results of individual compounds w samples aren' corrected for the rec	ard to . The ithin	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(5) AGS Reference	BH5 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589940	BH6 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589941	WS102 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589939		
(F) Trigger breach confirmed Component	LOD/Un	its Method					
Benzo(a)pyrene (aq)	<1 µg		<1	<1	<1		
Benzo(g,h,i)perylene (aq)	<1 µg	g/I TM176	<1	<1	<1		
Carbazole (aq)	<1 µg	g/I TM176	<1	<1	<1		
Chrysene (aq)	<1 µg	g/I TM176	<1	<1	<1		
Dibenzofuran (aq)	<1 µg	g/I TM176	<1	<1	<1		
n-Dibutyl phthalate (aq)	<1 µg	g/I TM176	<1	<1	<1		
Diethyl phthalate (aq)	<1 µg	g/I TM176	<1	<1	<1		
Dibenzo(a,h)anthracene (aq)	<1 µg		<1	<1	<1		
Dimethyl phthalate (aq)	<1 µg	g/I TM176	<1	<1	<1		
n-Dioctyl phthalate (aq)	<5 µg	µ/I TM176	<5	<5	<5		
Fluoranthene (aq)	<1 µg	µ/I TM176	<1	<1	<1		
Fluorene (aq)	<1 µg	g/I TM176	<1	<1	<1		
Hexachlorobenzene (aq)	<1 µg	g/I TM176	<1	<1	<1		
Hexachlorobutadiene (aq)	<1 µg	g/I TM176	<1	<1	<1		
Pentachlorophenol (aq)	<1 µg	g/I TM176	<1	<1	<1		
Phenol (aq)	<1 µg	g/I TM176	<1	<1	<1		
n-Nitroso-n-dipropylamine (ag)	<1 µg	g/I TM176	<1	<1	<1		
Hexachloroethane (aq)	<1 µg	g/I TM176	<1	<1	<1		
Nitrobenzene (aq)	<1 µg		<1	<1	<1		
Naphthalene (aq)	<1 µg		<1	<1	<1		
Isophorone (aq)	<1 µg	g/I TM176	<1	<1	<1		
Hexachlorocyclopentadien e (aq)	<1 µg	g/I TM176	<1	<1	<1		
Phenanthrene (aq)	<1 µg	g/I TM176	<1	<1	<1		
Indeno(1,2,3-cd)pyrene (aq)	<1 µg		<1	<1	<1		
Pyrene (aq)	<1 µg		<1	<1	<1		
SVOC TIC (aq)	-	TM176	See Attached	No TICs identified	No TICs identified		

							FA	NALYSIS			
SDG: Job:	110602 H WAR		SHF-38			th Bierley dell Armstron			Order Number: Report Number:	SH3068 133631	
Client Reference:	SH105	_	_3111 -30			nne Shaw	y LLF		Superseded Repo		
IPH CWG (W)											
Results Leg # ISO17025 accredited. M mCERTS accredited. § Non-conforming work aq Aqueous / settled san diss.filit Dissolved / filtered sa toLunfit Total / unfiltered sam toLunfit Total / unfiltered sam check the efficiency of results of individual o samples aren't correc (F) Trigger breach confir	k. Imple. Imple. ple. Trogate standard of the method. Th compounds with cted for the record	he in	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	BH5 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589940		BH6 Water(GW/S) 01/06/2011 02/06/2011 110602-86 3589941					
Component	ineu	LOD/U	nits Method								
GRO Surrogate % recovery**		%	TM245	95		54	ş				
GRO >C5-C12		<50 µ	ıg/I TM245	<50	#	<50	6				
Methyl tertiary butyl e (MTBE)	ether	<3 µ	g/I TM245	<3	#	<3	ş				
Benzene		<7 µ	g/I TM245	<7	#	<7	ş				
Toluene		<4 µ	g/I TM245	<4	#	8	ş				
Ethylbenzene		<5 µ	g/I TM245	<5	#	<5	ş				
m,p-Xylene		<8 µ	g/I TM245	<8	#	<8	ş				
o-Xylene		<3 µ	g/I TM245	<3	#	<3	ş				
Sum of detected Xyle	enes	µg/	1 TM245	none detected	_	none detec					
Sum of detected BTE	X	µg/	1 TM245	none detected	1	8	ş				
Aliphatics >C5-C6		<10 µ	ıg/I TM245	<10		<10	ş				
Aliphatics >C6-C8		<10 µ	ıg/I TM245	<10		<10	ş				
Aliphatics >C8-C10		<10 µ	ıg/I TM245	<10		<10	ş				
Aliphatics >C10-C12		<10 µ	ıg/I TM245	<10		<10	ş				
Aliphatics >C12-C16	(aq)	<10 µ	ıg/I TM174	<10		155					
Aliphatics >C16-C21	(aq)	<10 µ	ıg/I TM174	20		524					
Aliphatics >C21-C35	(aq)	<10 µ	ıg/I TM174	216		3390					
Total Aliphatics >C12 (aq)	2-C35	<10 µ	ıg/I TM174	236		4070					
Aromatics >EC5-EC7	'	<10 µ	ıg/I TM245	<10		<10	ş				
Aromatics >EC7-EC8	3	<10 µ	ıg/I TM245	<10		<10	ş				
Aromatics >EC8-EC1	0	<10 µ	ıg/I TM245	<10		<10	ş				
Aromatics >EC10-EC	:12	<10 µ	ıg/I TM245	<10		<10	ş				
Aromatics >EC12-EC (aq)	:16	<10 µ	ıg/I TM174	<10		83					
Aromatics >EC16-EC (aq)	21	<10 µ	ıg/I TM174	<10		264					
Aromatics >EC21-EC (aq)	35	<10 µ	ıg/I TM174	43		1870					
Total Aromatics >EC12-EC35 (aq)		<10 µ	ıg/I TM174	43		2220					
Total Aliphatics & Aromatics >C5-35 (ad	g)	<10 µ	ıg/I TM174	279		6300					
	"				1						
					╡						
					1						
					1						
					╡						
					+						
					+						

CERTIFICATE OF ANALYSIS

Validated

	borato	1100		CER	TII	FICATE OF	ANALYSIS			validate	Ju
Job:	110602-8 H_WARD SH10534	DELL_	SHF-38	Customer:	Wa	rth Bierley Irdell Armstrong LL anne Shaw	Р	Order Number: Report Number: Superseded Report:	SH3068 133631		
VOC MS (W)	51110554	,		Attention.	500			Superseded Report.			
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate check the efficiency of the r results of individual compo samples aren to corrected for (F) Trigger breach confirmed	e standard to method. The ounds within or the recovery	y	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(5) AGS Reference	BH5 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589940		BH6 Water(GW/SW) 01/06/2011 02/06/2011 110602-86 3589941					
Component Dibromofluoromethane**		OD/Uni %	ts Method TM208	104		105		+			
Toluene-d8**	+	%	TM208	98.1		98.6					
4-Bromofluorobenzene**		%	TM208	89.1		90.8					
Dichlorodifluoromethane		<7 µg	/I TM208	<7	#	<7	ŧ				
Chloromethane		<9 µg	/I TM208	<9	#	<9	ŧ				
Vinyl chloride		<1.2 µ	g/I TM208	<1.2	#	<1.2	ŧ				
Bromomethane		<2 µg		<2	#		ŧ				
Chloroethane		<2.5 µ		<2.5	#		ŧ				
Trichlorofluoromethane		<1.3 µ		<1.3	#		ŧ				
1,1-Dichloroethene		<1.2 µ		<1.2	#	<1.2	ŧ				
Carbon disulphide		<1.3 µ		<1.3	#		ŧ				
Dichloromethane		<3.7 µ		<3.7	#		ŧ				
Methyl tertiary butyl ether (MTBE)		<1.6 µ		<1.6	#		ŧ				
trans-1,2-Dichloroethene		<1.9 µ	-	<1.9	#		ŧ				
1,1-Dichloroethane		<1.2 µ		<1.2	#		ŧ				
cis-1,2-Dichloroethene		<2.3 µ		<2.3	#		ŧ				
2,2-Dichloropropane Bromochloromethane		<3.8 μ <1.9 μ		<3.8	#	<3.8 <1.9	ŧ			_	
Chloroform		<1.9 µ		<1.5	#		ŧ			_	
1,1,1-Trichloroethane		< 1.6 µ <1.3 µ	-	<1.0	#		ŧ			_	
1,1-Dichloropropene		<1.3 µ		<1.3	#		ŧ				
Carbontetrachloride		<1.4 μ	-	<1.4	#		ŧ				
1,2-Dichloroethane		<3.3 µ		<3.3	#		ŧ				
Benzene		<1.3 µ		<1.3		<1.3					
Trichloroethene		<2.5 µ		<2.5	#		ŧ				
1,2-Dichloropropane	_	<3 µg		<3	#		ŧ			_	
Dibromomethane		<2.7 µ		<2.7	#	<2.7	ŧ	+			
Bromodichloromethane		<0.9 µ	-	<0.9	#	÷ <0.9	ŧ	+			
cis-1,3-Dichloropropene		<1.9 µ		<1.9	#	<1.9	ŧ	+			
Toluene		<1.4 µ		<1.4	#	<1.4	ŧ	+			
trans-1,3-Dichloropropene	e ·	<3.5 µ	g/I TM208	<3.5	#	<3.5	<u> </u>				
1,1,2-Trichloroethane	-	<2.2 µ	g/I TM208	<2.2	#	<2.2	ŧ	+ +			
1,3-Dichloropropane	-	<2.2 µ	g/I TM208	<2.2	#	<2.2	£				
Tetrachloroethene	-	<1.5 µ	g/I TM208	<1.5	#	<1.5	£	+ +			
Dibromochloromethane		<1.7 µ	g/I TM208	<1.7	#	<1.7	£ £				
					Ħ						

CERTIFICATE OF ANALYSIS

Validated

VOC MS (W)

VOC MS (W)						 	
Results Legend # ISO17025 accredited.	с	ustomer Sample R	BH5	BH6			
M mCERTS accredited. § Non-conforming work.		Depth (m)					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)			
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled Date Received	01/06/2011 02/06/2011	01/06/2011 02/06/2011			
** % recovery of the surrogate standar check the efficiency of the method.	The	SDG Ref	110602-86 3589940	110602-86			
results of individual compounds wit samples aren't corrected for the rec	thin	Lab Sample No.(s) AGS Reference	3569940	3589941			
(F) Trigger breach confirmed	LOD/Units	s Method					
Component 1,2-Dibromoethane	<2.3 µg		<2.3	<2.3			
			#	#			
Chlorobenzene	<3.5 µg/	/I TM208	<3.5	<3.5 #			
1,1,1,2-Tetrachloroethane	<1.3 µg	I TM208	<1.3	<1.3			
Ethylhonzono	<2.5 µg	1 TM208	# <2.5	# <2.5			
Ethylbenzene	~2.5 μg/	1 11/1200	~2.5	~2.5			
m,p-Xylene	<2.5 µg	I TM208	<2.5	<2.5			
o-Xylene	<1.7 µg	1 TM208	# <1.7	# <1.7			
			#	#			
Styrene	<1.2 µg/	/I TM208	<1.2	<1.2 #			
Bromoform	<3 µg/I	TM208	<3	<3			
Isopropylbenzene	<1.4 µg	1 TM208	# <1.4	# <1.4			
Isopropylbenzene	< 1.4 µg/		<1.4	<1.4			
1,1,2,2-Tetrachloroethane	<5.2 µg	I TM208	<5.2	<5.2			
1,2,3-Trichloropropane	<7.8 µg	/I TM208	<7.8	<7.8			
			#	#			
Bromobenzene	<2 µg/I	TM208	<2 #	<2 #			
Propylbenzene	<2.6 µg	I TM208	<2.6	<2.6			
2 Chlorotoluono	<1.9 µg/	1 TM208	# <1.9	#			
2-Chlorotoluene	< 1.9 µg/		<1.9	<1.9 #			
1,3,5-Trimethylbenzene	<1.8 µg	I TM208	<1.8	<1.8			
4-Chlorotoluene	<1.9 µg/	1 TM208	# <1.9	# <1.9			
			#	#			
tert-Butylbenzene	<2 µg/l	TM208	<2 #	<2 #			
1,2,4-Trimethylbenzene	<1.7 µg	/I TM208	<1.7	<1.7			
sec-Butylbenzene	<1.7 µg	1 TM208	# <1.7	# <1.7			
			#	#			
4-iso-Propyltoluene	<2.6 µg	/I TM208	<2.6 #	<2.6 #			
1,3-Dichlorobenzene	<2.2 µg	/I TM208	<2.2	<2.2			
1,4-Dichlorobenzene	<2.7 µg	1 TM208	# <2.7	# <2.7			
			#	#		 	
n-Butylbenzene	<2 µg/I	TM208	<2 #	<2 #			
1,2-Dichlorobenzene	<3.7 µg	I TM208	<3.7	<3.7			
1,2-Dibromo-3-chloropropa	<9.8 µg	1 TM208	<9.8	<9.8	<u>├</u>		
ne							
1,2,4-Trichlorobenzene	<2.3 µg/	1 TM208	<2.3 #	<2.3 #			
Hexachlorobutadiene	<2.5 µg/	I TM208	<2.5	<2.5			
tert-Amyl methyl ether	<1 µg/l		# <1	# <1			
(TAME)			#	#			
Naphthalene	<3.5 µg/	I TM208	<3.5	<3.5			
1,2,3-Trichlorobenzene	<3.1 µg	/I TM208	# <3.1	# <3.1	<u> </u>		
			#	#			
1,3,5-Trichlorobenzene	<10 µg/	1 TM208	<10	<10			
VOC TIC	-	TM208	No TICs identified	No TICs identified			
Sum of detected Xylenes	µg/l	TM208	none detected	none detected	<u>├</u>		
	P.0/1	111/200	none deletted				
					<u>├</u>		

CERTIFICATE OF ANALYSIS

Validated

SH3068 SDG: 110602-86 Location: North Bierley Order Number: H_WARDELL_SHF-38 Wardell Armstrong LLP 133631 Job: Customer: Report Number: Client Reference: SH10534 Attention: Joanne Shaw Superseded Report:

Notification of Non-Conforming Work

Sample Number	Customer Sample Ref.	Depth (m) Matrix	Test Name	Component Name	Comment
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aliphatics >C10-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aliphatics >C5-C6	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aliphatics >C6-C8	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aliphatics >C8-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aromatics >EC10-EC12	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aromatics >EC5-EC7	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aromatics >EC7-EC8	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Aromatics >EC8-EC10	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Benzene	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	EPH (C6-C10)	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	EPH (C6-C10) mg/l	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Ethylbenzene	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C10-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C5-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C5-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C5-C6	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C6-C7	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C6-C8	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C7-C8	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO >C8-C10	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO QC	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	GRO Surrogate % recovery**	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	m,p-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6	LIQUID	GRO by GC-FID (W)	Methyl tertiary butyl ether (MTBE)	Volatile Analysis performed on vessel with headspace due testing requirement

CERTIFICATE OF ANALYSIS

Validated

U				CER	TIFICATE OF AN	ALYSIS	
SDG: Job: Client Refere	_	DELL_SHF-38		Location: Customer: Attention:	North Bierley Wardell Armstrong LLP Joanne Shaw	Order Number: Report Number: Superseded Report	SH3068 133631 :
Sample Number	Customer Sample Ref.	Depth (m)	Matrix		Test Name	Component Name	Comment
3589975	BH6		LIQUID	GR	O by GC-FID (W)	o-Xylene	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	QC raw	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	Sum of detected BTEX	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	Sum of detected Xylenes	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	tert-Amyl methyl ether (TAME)	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	Toluene	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	Total Aliphatics >C5-C12	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	Total Aromatics >EC5-EC12	Volatile Analysis performed on vessel with headspace due testing requirement
3589975	BH6		LIQUID	GR	O by GC-FID (W)	Trace	Volatile Analysis performed on vessel with headspace due testing requirement

Note : Test results may be invalid

CERTIFICATE OF ANALYSIS

Validated

·L-					
SDG:	110602-86	Location:	North Bierley	Order Number:	SH3068
Job:	H_WARDELL_SHF-38	Customer:	Wardell Armstrong LLP	Report Number:	133631
Client Reference:	SH10534	Attention:	Joanne Shaw	Superseded Report:	

Notification of NDPs (No determination possible)

Date Received : 02/06/2011 15:28:07

Sample No	Customer Sample Ref.	Depth (m)	Test	Comment
3589939	WS102		TPH CWG (W)	Insufficient Sample
3589939	WS102		EPH CWG (Aliphatic) Aqueous GC (W)	Insufficient Sample
3589939	WS102		EPH CWG (Aromatic) Aqueous GC (W)	Insufficient Sample

C

CERTIFICATE	OF ANALYSIS
-------------	--------------------

Validated

Table of Results - Appendix

DP	No Determinati	on Possible	#	ISO 17025 Accredited		Subcontracted Test	м	MCERTS Accredit	ted
FD	No Fibres Dete	cted	PFD	Possible Fibres Detected	»	Equivalent Carbo (Aromatics C8-C3			
	od detection limit lethod No	s are not always achievable	due to vario Refer	us circumstances beyond our c	control	Description		Wet/Dry	Surrogat
IV.		Mathed for the De			Determination		and hu	Sample 1	Correcte
	TM061	Method for the De EPH,Massachuse			GC-FID (C10-C	of Extractable Petroleum Hydrocart 40)	oons by		
	TM101	Method 4500B & (1999	C, AWWA	APHA, 20th Ed.,	Determination of Kone Analyser	of Sulphide in soil and water sampl	es using the		
	TM152	Method 3125B, AV	WWA/APH	IA, 20th Ed., 1999	Analysis of Aqu	eous Samples by ICP-MS			
	TM174	Analysis of Petrole Environmental Me Hydrocarbon Crite	dia – Ťota			of Speciated Extractable Petroleum n Waters by GC-FID	I		
	TM176	EPA 8270D Semi- by Gas Chromato (GC/MS)		rganic Compounds iss Spectrometry	Determination of	of SVOCs in Water by GCMS			
	TM178	Modified: US EPA	Method 8	100	Determination of GC-MS in Wate	of Polynuclear Aromatic Hydrocarb ers	ons (PAH) by		
	TM183	BS EN 23506:200 0 580 38924 3	2, (BS 60	58-2.74:2002) ISBN		of Trace Level Mercury in Waters a apour Atomic Fluorescence Spectr			
	TM184	EPA Methods 325	.1 & 325.2	2,		tion of Anions in Aqueous Matrices notometric Analysers	using the		
	TM208	Modified: US EPA	Method 8	260b & 624	Determination of GC-MS in Wate	of Volatile Organic Compounds by ers	Headspace /		
	TM227	Standard methods and wastewaters 2 Method 4500.		amination of waters n, AWWA/APHA	Determination of Cyanide and Th	of Total Cyanide, Free (Easily Liber niocyanate	atable)		
	TM228	US EPA Method 6	010B		Determination of ICP-OES	of Major Cations in Water by iCap 6	5500 Duo		
	TM241	Methods for the E Associated Materi Potable Waters ar	als; Chror	nium in Raw and		ion of Hexavalent Chromium in Wa g the Kone Analyser	aters and		
	TM245	By GC-FID			Determination of	of GRO by Headspace in waters			
	TM256	The measurement the Laboratory def Natural, Treated a 1978. ISBN 011 7	erminatio nd Waste		Determination of Meter	of pH in Water and Leachate using	the GLpH pH		
	TM259	by HPLC			Determination of	of Phenols in Waters and Leachate	s by HPLC		
	TM294								

13:29:14 13/06/2011

CERTIFICATE OF ANALYSIS

Validated

SDG:	110602-86	Location:	North Bierley	Order Number:	SH3068
Job:	H WARDELL SHF-38	Customer:	Wardell Armstrong LLP	Report Number:	133631
Client Reference:	SH10534	Attention:	Joanne Shaw	Superseded Report:	

Test Completion Dates

Lab Sample No(s)	3589940	3589941	3589939
Customer Sample Ref.	BH5	BH6	WS102
AGS Ref.			
Depth			
Туре	LIQUID	LIQUID	LIQUID
Anions by Kone (w)	09-Jun-2011	09-Jun-2011	
Cyanide Comp/Free/Total/Thiocyanate	07-Jun-2011	07-Jun-2011	
Dissolved Metals by ICP-MS	08-Jun-2011	08-Jun-2011	
EPH CWG (Aliphatic) Aqueous GC (W)	09-Jun-2011	09-Jun-2011	
EPH CWG (Aromatic) Aqueous GC (W)	09-Jun-2011	09-Jun-2011	
Free Sulphur	08-Jun-2011	09-Jun-2011	
GRO by GC-FID (W)	10-Jun-2011	10-Jun-2011	10-Jun-2011
Hexavalent Chromium (w)	07-Jun-2011	07-Jun-2011	
Mercury Dissolved	07-Jun-2011	08-Jun-2011	
Metals by iCap-OES Dissolved (W)	07-Jun-2011	07-Jun-2011	
PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	
pH Value	08-Jun-2011	08-Jun-2011	
Phenols by HPLC (W)	08-Jun-2011	09-Jun-2011	
Sulphide	07-Jun-2011	08-Jun-2011	
SVOC MS (W) - Aqueous	10-Jun-2011	10-Jun-2011	10-Jun-2011
TPH CWG (W)	10-Jun-2011	10-Jun-2011	
VOC MS (W)	09-Jun-2011	09-Jun-2011	

SVOC Tentatively Identified Compounds

Job Number	-	110602-86
Customer	-	H_WARDELL_SHF
Sample Identity	-	3612430 / BH5[]
Sample Type [Units]	-	Water - µg/l
Date Acquired	-	10/06/11
Date Reported	-	10/06/11
Analyst	-	YL

Tentative Compound Identification		Retention Time min	Concentration µg/l
Unknown hydrocarbons	-	13.3 - 17.19	6808
	-		
	-		
	-		
	_		
	_		
	-		
	-		
	-		

MAY INCLUDE PREVIOUSLY QUANTIFIED RESULTS

Please Note: the identification and semi-quantification of these tentatively identified compounds is outside the scope of the UKAS accreditation for this method

CERTIFICATE OF ANALYSIS

SDG:	110602-86		North Bierley
Job:	H_WARDELL_SHF-38	Customer:	Wardell Armstrong LLP
Client Reference:	SH10534	Attention:	Joanne Shaw

Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2 Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour 5. We take responsionly for any less performed by sub-contractors (marked with an asiensk), we endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately

11. Results relate only to the items tested.

12 LODs for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed

Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and ethylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 15 4-Methylphenol) Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeayour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

Order Number: Report Number: SH3068 133631

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	DIC OR WET	EXTRACTION SOLVENT	Extraction Method	ANALYSS		
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC		
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SDXTHEFEM	GRAVIMETRIC		
THIN LAYER CHROMATOGRAPHY	D&C	DOM	NPTH-TXC2	ATROSCAN		
ELEMENTALSULFHUR	D&C	DOM	MFEHTXOR	HFLC		
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS		
HEREICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS		
PESTICIDES D&C		HEXANEACETONE	SOXTHERM	GCMS		
EPH (DRO)	D&C	HEXANEACETONE	ENDOWEREND	GCFD		
ETH (MNOL)	D&C	HEXANEACETONE	ENDOWEREND	GCFD		
EPH (OLENNED UP)	D&C	HEXANEACETONE	ENDOWEREND	GCFD		
EPH CMG BYGC	D&C	HEXANEACETONE	ENDOWEREND	GCFD		
POB TOT / POB CON	D&C	HEXANEACETONE	ENDOWEREND	GCMS		
FOLVAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS		
08-040(08-040)ez Flash	WET	HEXANEACETONE	SHAMER	GCEZ		
POL VAROMATIC HYDROCARBONS RAFID GC	WET	HEXANEACETONE	SHAMER	GCEZ		
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMAGETONE	SONICATE	GCMS		

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	Extraction Method	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHONG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 700 NGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESUPHUR	DOM	SOLID PHASE EXTRACTION	HFLC
PEST COPIOPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRAZINE HEREG	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID FHASE EXTRACTION	GCMS
TRH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HFLC
MNERALOIL by R	TCE	LIQUID/LIQUID SHAKE	HFLC
GLYCOLS	NONE	DIRECT NUECTION	GCMS

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk The results for identification of asbestos in bi materials are obtained from supplied bulk materials those identified as potentially asbestos contani during sample description which have be examined to determine the presence of asbest fibres using Alcontrol Laboratories (Hawarde in-house method of transmitted/polarised lig microscopy and central stop dispersion stainin based on HSG 248 (2005). ials o be

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation

Asbestos Type	Common Name
Chrysofile	WhiteAddeedatos
Ancale	BrownAsbestos
Ooiddie	BLe Advestos
Fibraus Asindhe	-
Florous Anthophylite	-
Fibrous Trendile	-

Superseded Report:

APPENDIX VII

Statistical Analysis of Geochemical Laboratory Results

STATISTICAL ANALYSIS OF SOIL CONTAMINATION DATA - PLANNING SCENARIO (Based on CL-AIRE/CIEH Guidance on Comparing Soil Contamination Data with a Critical Concentration, May 2008)

ng	Job Number:	SH11534	Job Name:	North Bierley
0	Assessor:	J Lymer	Date	15/05/2015
	Proposed Land Use:	Commercial / Industrial	Zone:	All Data

Key Question: Is there significant evidence that the true mean concentration of the contaminant is less than the screening value (critical concentration)?

Null Hypothesis (H0): The true mean concentration is equal to or greater than the screening value (critical concentration; μ * Cc)

Alternative Hypothesis (H1): The true mean concentration is less than the screening value (critical concentration; $\mu < cc$)							
SAMPLE IDENTIFICATION / STATISTICAL							

	TEST	Phenol (total-								1	-						
		Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Selenium (Se)	Boron (B)	Zinc (Zn)	Cyanide (total)	mono)	Sulphate (total)	Sulphate (2:1)	Sulphide (S ²⁻)	Chromium
Location	Depth (mbgl)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	g/l	mg/kg	mg/kg
WS 109	0.70	15.8	0.5	25.9	23.6	23.8	0.1	33.6	1.1	1.0	90.1	1.0	0.10	0.014	0.035	15.00	0.60
TP 101	0.60	18.2	1.6	19.7	84.6	1680.0	0.1	20.8	1.0		1230.0		0.10	0.025	0.008		0.60
TP 102	0.80	25.6	0.5	25.6	115.0	1150.0	0.6	39.2	1.0	1.0	122.0	3.8	0.10	0.010		15.00	0.60
TP 103	0.40	41.2	0.0	810.0	85.1	73.1	0.1	50.6	2.7		154.0		0.10	0.134	0.088		1.20
TP 104	0.50	12.8	0.5	23.1	45.1	26.1	0.1	49.3	1.0		113.0		0.10	0.022	0.039		0.60
TP 105	0.30	20.7	0.5	166.0	85.6	95.8	0.1	34.7	1.1		208.0		0.10	0.141	0.058		0.60
TP 105	0.90	6.1	0.4	28.0	22.8	21.5	0.1	31.9	1.0	1.0	76.0	1.0	0.10	0.017		15.00	0.60
TP 106		8.6		24.1	32.1	21.2	0.1	34.3	1.0		92.0		0.10	0.075	0.029		0.60
TP 107 TP 108	0.70	10.0	0.0	24.6	24.0 24.8	21.7	0.1	36.1 10.6	1.0		92.2 51.1		0.10	0.077	0.167		0.60
TP 108 TP 109	0.75	101.0	1.1	24.3	127.0	160.0	0.1	10.6	10.0	1.0	219.0	1.5	0.10	0.016	0.023	15.00	1.20
TP 109 TP 110	1.00	28.1					0.1	29.6	2.1	1.0	313.0	1.5	0.10	0.051	0.016	15.00	0.60
TP 110 TP 111	0.70	45.9	1.3	25.4	85.4 37.9	70.1 22.2	0.1	30.3	1.0		62.9		0.10	0.026	0.041		1.20
TP 111 TP 111	1.20	45.9 52.3	0.0	30.4	51.0	43.5	0.1	30.3	1.0		79.8		0.10	0.456	0.204	1	0.60
TP 111 TP 112	1.20	9.6	0.2	23.4	24.0	43.5	0.1	36.7	1.0	1.0	79.8	1.0	0.10	0.084	0.200	15.00	0.60
TP 112	0.35	9.8	0.3	23.4	16.7	10.5	0.1	18.8	1.0	1.0	59.8	1.0	0.10	0.008	0.016	13.00	0.60
TP 115	0.45	19.4	1.8	40.0	40.1	34.4	0.1	33.3	1.0	1.0	130.0	1.0	0.10	0.007	0.008	15.00	0.60
TP 114	0.30	56.8	0.0	63.7	64.3	52.6	0.1	33.1	1.0	1.0	115.0		0.10	0.204	0.123		0.60
TP 117	0.40	5.8	0.3	26.6	46.3	16.9	0.1	52.4	1.0	1.0	105.0	1.0	0.10	0.014		15.00	0.60
TP 118	0.70	15.7	0.2	25.3	31.9	40.1	0.1	34.5	10.0		113.0	2.0	0.10	0.027	0.027		0.60
TP 119	0.30	8.3	0.4	24.0	26.1	17.3	0.1	38.1	1.0	1.0	81.4	1.0	0.10	0.031		15.00	0.60
WS 101	0.40	40.3	0.6	68.5	78.5	105.0	0.1	28.0	5.0	1.0	126.0	1.0	0.10	0.014	0.008	15.00	0.60
WS 102	0.70	625.0	1.8	477.0	447.0	485.0	0.9	36.8	1.8	1.0	396.0	8.7	0.10	0.144		15.00	1.37
WS 103	0.30	10.8	0.0	35.5	49.6	92.5	0.1	29.2	10.0		91.7		0.10	0.022	0.021		0.60
WS 104	0.40	9.3	0.3	29.7	21.6	19.7	0.1	34.8	1.0	1.0	79.1	1.1	0.10	0.005	0.015	15.00	0.60
WS 105	0.30	5.6	0.0	26.6	24.5	30.5	0.1	35.8	1.0		87.5		0.10	0.040	0.102		0.60
WS 106	0.50	28.0	0.7	176.0	158.0	137.0	0.1	38.0	1.0	1.0	209.0	23.8	0.10	0.078		15.00	1.20
WS 107	0.50	25.1	0.5	32.4	41.7	112.0	0.1	28.4	1.0		96.2		0.10	0.060	0.013		0.60
WS 108	0.40	160.0	0.0	168.0	259.0	508.0	0.9	22.4	10.0		329.0		0.10	0.136	0.140		3.00
WS 110	0.60	17.2	0.0	20.3	30.6	31.1	0.1	35.7	1.0		88.2		0.10	0.025	0.008		0.60
	Number of samples (N)	29	29	29	29	29	29	29	29	11	29	11	29	29	22	11	29
	Minimum	5.56	0.02	19.7	16.7	16.5	0.14	10.6	1	1	51.1	1	0.1	0.00499	0.008	15	0.6
	Maximum	625	1.82	810.0	447	1680	0.936	52.4	10	1	1230	23.8	0.1	0.456	0.204	15	3
	Standard Deviation	115	1	166	88	370	0	9	4	0	221	7	0	0	0	0	0
	g Value (Critical Conc.; Cc)	640	190	8600	68000	2330	1100	980	12000	9000	730000	20	760	n/a	n/a	n/a	33
	Source of Screening Value																
utlier Identific																	
	Standardised Value (Tn)	3.140	1.275	2.961	2.716	2.588	3.163	1.526	1.620	#DIV/01	3.375	2.302	-0.983	2.266	1.576	#DIV/01	3.666
	Critical Value (Tcrit)	2.730	2.730	2.730	2.730	2.730	2.730	2.730	2.730	2.234	2.730	2.234	2.730	2.730	2.603	2.234	2.730
	there an Outlier (Tn > Tcrit)	YES	NO	YES	NÖ	NO	YES	NO	NO	#DIV/01	YES	YES	NO	NO	NO	#DIV/01	YES
Outli	ier location(s) and depth(s)																
	Outlier status																
	ave a Normal Distribution?																
Visual E	Estimate (probablitity plot)	NO 0.37	NO 0.82	NO 0.46	NO 0.61	NO 0.48	NO 0.37	YES 0.96	NO 0.61	n/a stdev=0	NO 0.48	#REF! #REF!	NO 0.00	NO 0.65	NO 0.56	n/a stdev=0	NO 0.45
	Shapiro-Wilk statistic (W)	0.37 NO	0.82 NO	0.46 NO	0.61 NO	0.48 NO	0.37 NO	U.96 YES	0.61 NO	n/a stdev=0	0.48 NO	#REF!	NO NO	0.65 NO	0.56 NO	n/a stdev=0	0.45 NO
	Wilk Test (is W > Sig(0.05)) n Concentration (95% UCL)		n/a	n/a	n/a	n/a	n/a	36		n/a stdev=0		#REF!		n/a		n/a stdev=0 15	n/a
	enificant evidence that the	n/a	11/a	n/a	11/a	n/a	11/2	36	n/a	1	n/a	entr!	n/a	n/a	n/a	-15	n/a
	ncentration is less than the	n/a	n/a	n/a	n/a	n/a	n/a	YES	n/a	YES	n/a	#REF!	n/a	n/a	n/a	YES	n/a
ean cor	screening value (µ < Cc)?	1.74		/a	/a	/ a	.1/4	.65	.44	.25	.17.8	WALEP I		.1/4	/a	.23	ii/a
	Level of Evidence (p., %)	n/a	n/a	n/a	n/a	n/a	n/a	100	n/a	#DIV/01	n/a	#REF!	n/a	n/a	n/a	n/a	n/a
oes the Data h	ave a Non-normal Distributi																
	Chebychey Theorem.	YES	YES	YES	YES	YES	YES	NO	YES	NO	YES	#REF!	YES	YES	YES	NO	YES
Mean	n Concentration (95% UCL)	143	1	224	147	477	0	n/a	7	n/a	351	#REF!	0	0	0	n/a	1
	gnificant evidence that the																
	ncentration is less than the	YES	YES	YES	YES	YES	YES	n/a	YES	n/a	YES	#REF!	YES	n/a	n/a	n/a	YES
	screening value (u < Cc)?									/-					/-		
																	99

STATISTICAL ANALYSIS OF SOIL CONTAMINATION DATA - PLANNING SCENARIO (Based on CLAIRE/CIEH Guidance on Comparing Soil Contamination Data with a Critical Concentration, May 2008)

Job Number:	SH11534	Job Name:	North Bierley
Assessor:	J Lymer	Date:	15/05/2015
Proposed Land Line:	Commercial / Industrial	7000	All Data

Key Question: Is there significant evidence that the true mean concentration of the contaminant is less than the screening value (critical concentration)?

Null Hypothesis (H0): The true mean concentration is equal to or greater than the screening value (critical concentration; μ ^a Cc)

Alternative Hypothesis (H1): The true mean concentration is less than the screening value (critical concentration; µ < cc)

SAMPLE IDENTIFICATION / STATISTICAL TEST								RECORDE	D CONCENTRATION	/ STATISICAL RE	SULT						
		Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenzo(ah) anthracene	Fluoranthene	Fluorene	Indeno(123cd) pyrene	Naphthalene	Phenanthrene	Pyrene
Location	Depth (mbgl)	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
TP 101	0.60	597	100.0	1030	1980	1720	1100	746	1480	2020	178	4520	483.00	690	795	4550	3880
TP 102	0.80	8	12.0	16	70	50	78	41	28	58	23	81	10.00	32	55	92	73
TP 103	0.40	442	200.0	1220	4630	5710	4670	3210	4140	4600	739	8750	377.00	3020	381	4350	7940
TP 104 TP 105	0.50	100	100.0	100	100 236	100	124 272	100 199	100 287	198 344	100	176 445	100.00	100	387 162	622 382	181 425
TP 105	0.30	100	100.0	24	236	305	40	24	14	23	23	445	100.00	164	162	382	425
TP 105	0.50	127	100.0	796	2350	2400	1860	1250	1830	2210	255	4790	116.00	1140	166	1950	4140
TP 107	0.70	100	100.0	100	100	100	1000	100	1000	100	100	100	100.00	100	100	100	100
TP 108	0.75	100	100.0	100	100	100	100	100	100	100	100	100	100.00	100	100	100	100
TP 109	0.60	186	81.9	442	1600	1560	2200	1100	810	1500	310	2860	153.00	992	166	1620	2400
TP 110	1.00	100	100.0	132	544	594	523	335	466	569	100	1040	100.00	291	100	618	950
TP 111	0.70	100	100.0	100	128	100	100	100	100	243	100	135	100.00	100	187	931	174
TP 111	1.20	100	100.0	226	628	568	502	290	456	636	100	1330	100.00	267	133	916	1130
TP 112	0.50	8	12.0	16	14	15	15	24	14	10	23	17	10.00	18	9	15	15
TP 113	0.45	100	100.0	100	100	100	100	100	100	100	100	100	100.00	100	100	100	100
TP 114	0.80	8	12.0	16	54	27	44	30	20	56	23	71	10.00	18	9	77	62
TP 115	0.30	100	100.0	100	191	204	236	179	150	296	100	312	100.00	133	309	801	317
TP 117	0.40	8	12.0	16	25	15	26	24	14	33	23	24	12.60	18	155	206	27
TP 118	0.70	100	100.0	100	215	229	205	142	181	247	100	386	100.00	119	100	286	361
TP 119	0.30	8	12.0	19	82	69	147	85	40	98	23	130	10.00	46	36	179	125
WS 101	0.40	55	28.3	174	1000	1050	1270	791	528	951	165	2040	36.40	642	49	620	1830
WS 102	0.70	4050	395.0	7930	16500	16300	16500	9650	7130	14000	2530	35800	3590.00	8940	6390	29600	28600
WS 103	0.30	100	100.0	146	372	375	307	242	288	392	100	765	100.00	204	159	637	663
WS 104	0.40	8	12.0	16	31	20	38	24	14	25	23	33	10.00	18	12	34	30
WS 105	0.30	100	100.0	100	100	100	100	100	100	100	100	100	100.00	100	100	147	100
WS 106	0.50	93	68.2	259	1550	1980	2260	1850	859	1460	400	2290	71.70	1470	567	1350	2060
WS 107	0.50	498	100.0	951	1770	1710	1300	751	1450	1950	163	4310	472.00	705	1110	4650	3780
WS 108	0.40	8450	1000.0	10400	20300	19400	13900	9900	14100	20500	2030	47100	5920.00	8860	7060	49000	40200
WS 109	0.70	8 100	12.0	16 100	54	30	62 100	41 100	14 100	68 100	23	65 100	10.00	18	86 100	196 131	60 100
WS 110	0.60 Number of samples (N)	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Minimum	30	30	30	30	30	30	30	30	30	30	17	30	18	30	30	30
	Maximum	8450	1000	10400.0	20300	15	15	24 9900	14	20500	2530	47100	5920	18 8940	7060	49000	40200
	Standard Deviation	1665	1000	2312	4641	4525	3843	9900 2467	2852	4407	567	10498	1224	2248	1675	10151	40200
Caracala	ng Value (Critical Conc.; Cc)	1665	212000	540000000	4641	4525	3843	4000000	1200000	350000	3600	23000000	68000000	510000	183000	22000000	5400000
Screenin	Source of Screening Value	141000	212000	54000000	170000	35000	44000	400000	1200000	350000	3600	2300000	68000000	510000	183000	2200000	5400000
utlier Identific			1								1	-				1	
actier identific	Standardised Value (Tn)	2.628	2.417	2.494	2.253	2.133	2.229	2.236	2.203	2.243	2.536	2.171	2.639	2.178	2.448	2.433	2.187
	Critical Value (Tcrit)	2.745	2.745	2.745	2.745	2.745	2.745	2.745	2.745	2.745	2.336	2.745	2.035	2.745	2.745	2.745	2.187
	there an Outlier (Tn > Tcrit)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	lier location(s) and depth(s)	NO	NO		NO	110	NO	NO	NO	NO	NO NO	NO	NO	10		NO	
ouu	Outlier status																
es the Data h	have a Normal Distribution?																
	Estimate (probablitity plot)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	Shapiro-Wilk statistic (W)	0.33	0.46	0.38	0.43	0.44	0.45	0.45	0.45	0.44	0.45	0.41	0.35	0.45	0.38	0.37	0.42
Shapiro	-Wilk Test (is W > Sig(0.05))	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	in Concentration (95% UCL)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ignificant evidence that the																
mean co	ncentration is less than the	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	screening value (μ < Cc)?		1		1											1	
	Level of Evidence (p1, %)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
oes the Data h	have a Non-normal Distribut																
	Chebychev Theorem.	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
	in Concentration (95% UCL)	1854	261	2669	5526	5437	4669	3018	3438	5274	727	12290	1394	2740	1970	11557	10307
	ignificant evidence that the																
mean co	ncentration is less than the	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
	screening value (μ < Cc)? Level of Evidence (p1, %)	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99

APPENDIX VIII

Geotechnical Laboratory Results

LABORATORY REPORT

4043

Contract Number: PSL11/1223

Client's Reference:

Report Date: 09 June 2011

Client Name: Wardell Armstrong Unit 4, Newton Business Centre Thorncliffe Park Chapeltown Sheffield S35 2PH

For the attention of: Mike Kelly

Contract Title: North Bierley WWTW

Date Received:24-May-11Date Commenced:24-May-11Date Completed:09-June-11

Notes: Observations and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

lo

R Gunson (Director) A Watkins (Director) M Beastall (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
BH1	4	В	0.85-1.20	Brown gravelly very sandy CLAY.
BH1	8	U	2.00-2.45	Very stiff brown gravelly very sandy CLAY.
BH1	9	D	2.50	Brown gravelly very sandy CLAY.
BH1	12	U	3.50-3.95	Stiff brown slightly gravelly slightly sandy very silty CLAY.
BH1	13	D	4.00	Brown slightly sandy very silty CLAY.
BH1	19	D	6.10	Brown sandy slightly clayey GRAVEL.
BH2	2	В	0.50-1.00	Brown very gravelly very sandy CLAY.
BH2	5	В	2.00-2.60	Brown mottled grey gravelly slightly sandy CLAY.
BH2	8	D	3.40	Dark grey very gravelly CLAY.
BH2	17	В	6.60-7.10	Brown very sandy very clayey GRAVEL.
BH2	20	D	8.40	Brown sandy GRAVEL.
BH3	6	В	1.10-1.70	Brown slightly gravelly very sandy CLAY.
BH3	4	U	1.20-1.65	Stiff brown mottled grey gravelly sandy CLAY.
BH3	5	D	1.70	Brown very gravelly sandy CLAY.
BH3	8	U	2.30-2.70	Very stiff brown gravelly very sandy CLAY.
BH3	9	D	2.70	Brown gravelly very sandy CLAY.
BH3	14	В	4.70-5.20	Brown very clayey SAND & GRAVEL.
BH4	2	В	0.50-1.00	Grey very gravelly sandy very silty CLAY.
BH4	3,4	В	1.20-2.40	Brown slighlty gravelly sandy CLAY.

	Compiled by	Date	Checked by	Date	Approved by	Date
l	(DD)	09/06/11	RC	09/06/11	R	09/06/11
Professional Soils Laboratory	NO	DTH DIFD		Contract No:	PSL11/1223	
	NO.		LEY WWTW.		Client Ref:	SH10534

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
BH4	5	D	2.40	Brown gravelly sandy CLAY.
BH4	6	U	2.50-2.95	Firm brown mottled grey slightly gravelly sandy silty CLAY.
BH4	7	D	3.00	Brown mottled grey very gravelly sandy silty CLAY.
BH4	9	U	4.50-4.95	Grey mottled brown gravelly sandy silty CLAY.
BH4	12	U	2.20-2.65	Brown mottled grey gravelly sandy CLAY.
BH4	13	D	7.00	Dark brown gravelly sandy CLAY.
BH4	17	D	7.80	Brown very gravelly sandy CLAY.
BH5	2,3,4	В	0.50-2.70	Grey very gravelly sandy CLAY.
BH5	5,7	В	3.20-4.50	Brown mottled grey very gravelly very sandy CLAY
BH5	7	В	4.00-4.50	Brown mottled grey very gravelly very sandy CLAY
BH5	10	U	5.70-6.15	Soft brown mottled grey slightly gravelly very sandy CLAY.
BH5	11	D	6.20	Brown mottled grey slightly gravelly very sandy CLAY.
BH5	12	В	5.80-6.50	Brown mottled grey slightly gravelly very sandy CLAY.
BH5	13	U	6.70-7.15	Firm brown mottled grey gravelly sandy CLAY.
BH5	14	D	7.20	Brown mottled grey gravelly sandy CLAY.
BH6	2,3,4	D	0.50-1.80	Brown gravelly sandy CLAY.
BH6	5	В	2.20-2.90	Brown mottled grey very gravelly sandy CLAY.
BH6	10	В	5.20-5.70	Brown mottled grey very gravelly very sandy CLAY.
BH6	10,11	В	5.20-6.70	Brown mottled grey very gravelly very sandy CLAY.

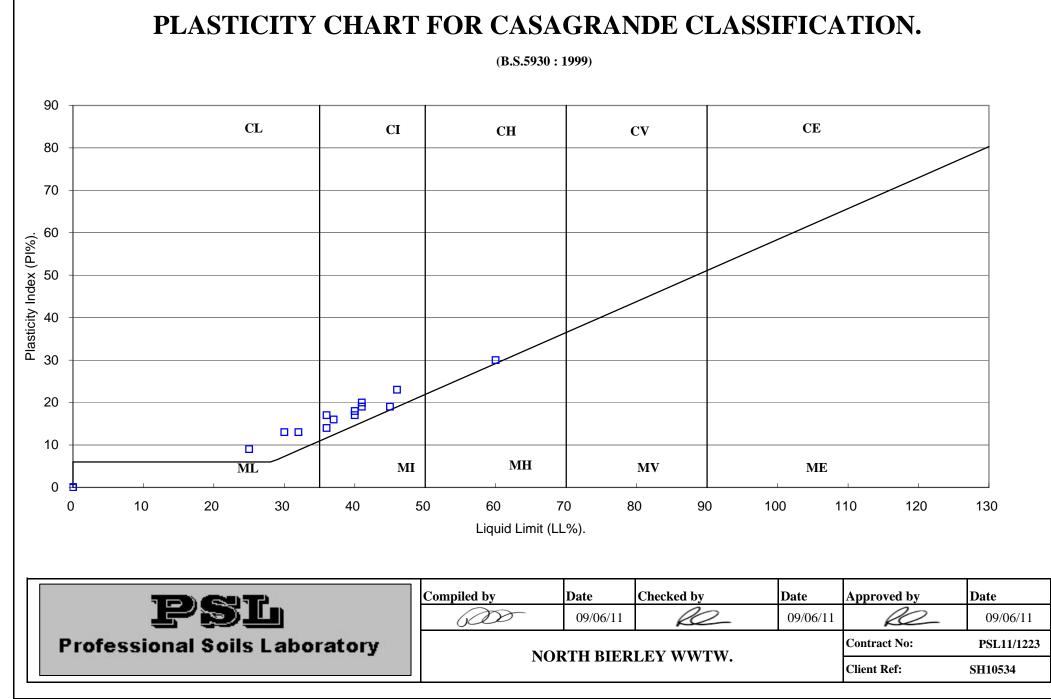
	Compiled by	Date	Checked by	Date	Approved by	Date
est.	\mathcal{A}	09/06/11	RC	09/06/11	R	09/06/11
Professional Soils Laboratory	NO	оти рігр		Contract No:	PSL11/1223	
	NO.		RLEY WWTW.		Client Ref:	SH10534

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
BH6	13	U	7.00-7.45	Firm grey slightly gravelly slightly sandy silty CLAY.
BH6	14	D	7.50	Grey gravelly silty CLAY.
BH6	17	U	8.50-8.95	Stiff brown gravelly sandy CLAY.
BH6	18	D	9.00	Brown gravelly sandy CLAY.
BH6	20	U	9.50-9.85	Firm brown very gravelly very sandy CLAY.
BH6	21	D	9.85	Brown very gravelly sandy CLAY.
BH7	3	U	1.20-1.65	Brown mottled grey very gravelly sandy CLAY.
BH7	4	D	1.70	Dark grey mottled brown very gravelly sandy silty CLAY.
BH7	6	U	2.20-2.65	Stiff brown mottled grey gravelly sandy CLAY.
BH7	15	U	5.50-5.85	Firm brown slightly gravelly sandy silty CLAY.
BH7	16	D	6.00	Brown gravelly sandy silty CLAY.
BH7	21	D	7.40	Brown gravelly sandy silty CLAY.
TP102		В	1.20	Brown mottled grey gravelly very sandy very silty CLAY.
TP108		В	0.90	Brown mottled grey gravelly very sandy very silty CLAY.
TP111		В	2.20	Brown slightly gravelly sandy CLAY.
TP114		В	1.10	Brown very gravelly very sandy silty CLAY.
TP118		В	1.40	Brown slightly gravelly slightly sandy CLAY.

	Compiled by	Date	Checked by	Date	Approved by	Date
PSL	6000	09/06/11	RC	09/06/11	R	09/06/11
Professional Soils Laboratory	NO	оти рігр	LEY WWTW.		Contract No:	PSL11/1223
	NO.				Client Ref:	SH10534

SUMMARY OF SOIL CLASSIFICATION TESTS


(B.S. 1377 : PART 2 : 1990)

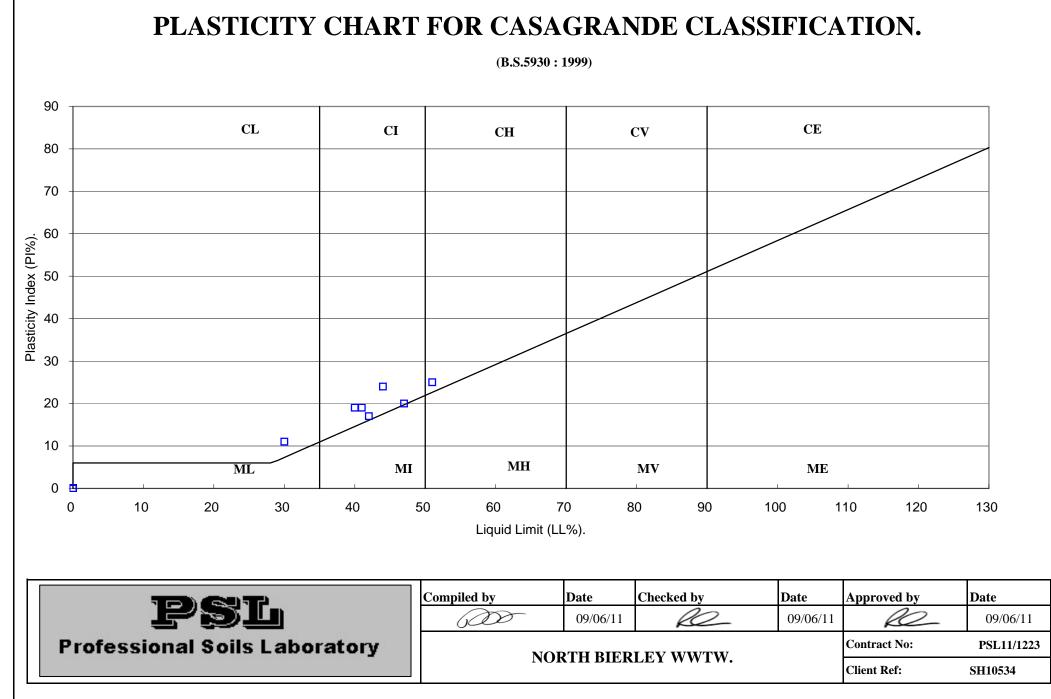
Hole Number	Sample Number	Sample Type	Depth m	Moisture Content %	Bulk Density Mg/m ³	Dry Density Mg/m ³	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	% Passing .425mm	Remarks
				Clause 3.2	Clause 7.2	Clause 7.2	Clause 8.	Clause 4.3/4.4	Clause 5.	Clause 6.		
BH1	9	D	2.50	14				25	16	9	68	Low plasticity CL.
BH1	13	D	4.00	17				37	21	16	95	Intermediate plasticity CI.
BH1	19	D	6.10	7.4					NP			
BH2	2	В	0.50-1.00	11								
BH2	5	В	2.00-2.60	27								
BH2	8	D	3.40	14								
BH2	20	D	8.40	9.4								
BH3	5	D	1.70	14				32	19	13	68	Low plasticity CL.
BH3	9	D	2.70	14				30	17	13	81	Low plasticity CL.
BH4	2	В	0.50-1.00	36								
BH4	5	D	2.40	19				36	22	14	81	Intermediate plasticity CI.
BH4	7	D	3.00	14				40	23	17	68	Intermediate plasticity CI.
BH4	13	D	7.00	28				60	30	30	82	High plasticity CH.
BH4	17	D	7.80	17				45	26	19	61	Intermediate plasticity CI.
BH5	7	В	4.00-4.50	19				41	21	20	50	Intermediate plasticity CI.
BH5	11	D	6.20	32				46	23	23	90	Intermediate plasticity CI.
BH5	14	D	7.20	18				41	22	19	79	Intermediate plasticity CI.
BH6	14	D	7.50	16				36	19	17	77	Intermediate plasticity CI.
BH6	18	D	9.00	20				40	22	18	80	Intermediate plasticity CI.

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

	Compiled by	Date	Checked by	Date	Approved by	Date
est.	\mathcal{A}	09/06/11	RC	09/06/11	R	09/06/11
Professional Soils Laboratory	NOI		Contract No:	PSL11/1223		
	NOI	AIN DIEK	LEY WWTW.		Client Ref:	SH10534

SUMMARY OF SOIL CLASSIFICATION TESTS


(B.S. 1377 : PART 2 : 1990)

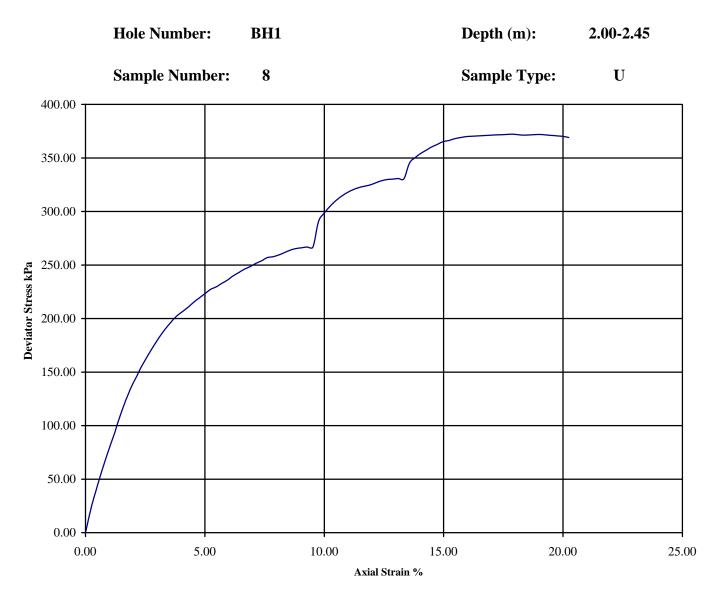
				Moisture	Bulk	Dry	Particle	Liquid	Plastic	Plasticity	%	
Hole	_	Sample	Depth	Content	Density	Density	Density	Limit	Limit	Index	Passing	Remarks
Number	Number	Туре	m	%	Mg/m ³	Mg/m ³	Mg/m ³	%	%	%	.425mm	
				Clause 3.2	Clause 7.2	Clause 7.2	Clause 8.	Clause 4.3/4.4	Clause 5.	Clause 6.		
BH6	21	D	9.85	15				40	21	19	68	Intermediate plasticity CI.
BH7	4	D	1.70	22				42	25	17	70	Intermediate plasticity CI.
BH7	16	D	6.00	19				44	20	24	82	Intermediate plasticity CI.
BH7	21	D	7.40	12				41	22	19	84	Intermediate plasticity CI.
TP102		В	1.20	26				47	27	20	81	Intermediate plasticity CI.
TP108		В	0.90	28				51	26	25	87	Intermediate plasticity CI.
TP114		В	1.10	13				30	19	11	54	Low plasticity CL.
	1											
	1											

SYMBOLS : NP : Non Plastic


*: Liquid Limit and Plastic Limit Wet Sieved.

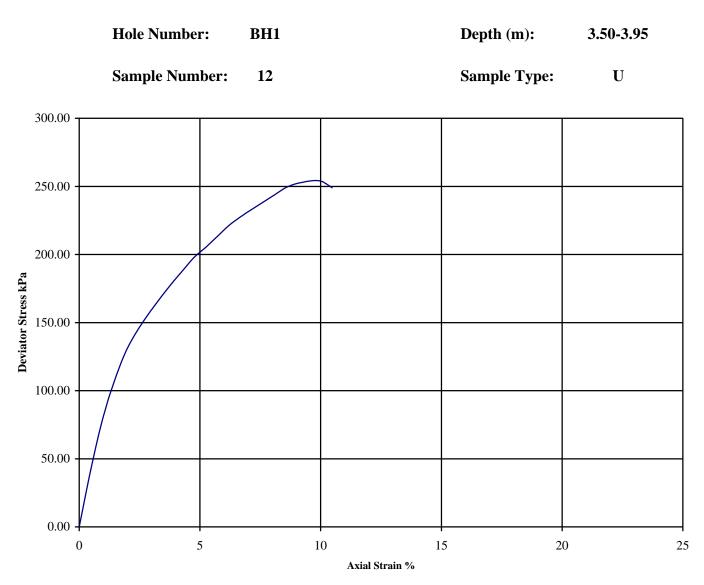
	Compiled by	Date	Checked by	Date	Approved by	Date
est.	\mathcal{A}	09/06/11	R	09/06/11	R	09/06/11
Professional Soils Laboratory	NOI		Contract No:	PSL11/1223		
	NOF	AIN DIEK	LEY WWTW.		Client Ref:	SH10534

BS1377 : Part 2 : 1990


Wet Sieve, Clause 9.2

NORTH BIERLEY WWTW.

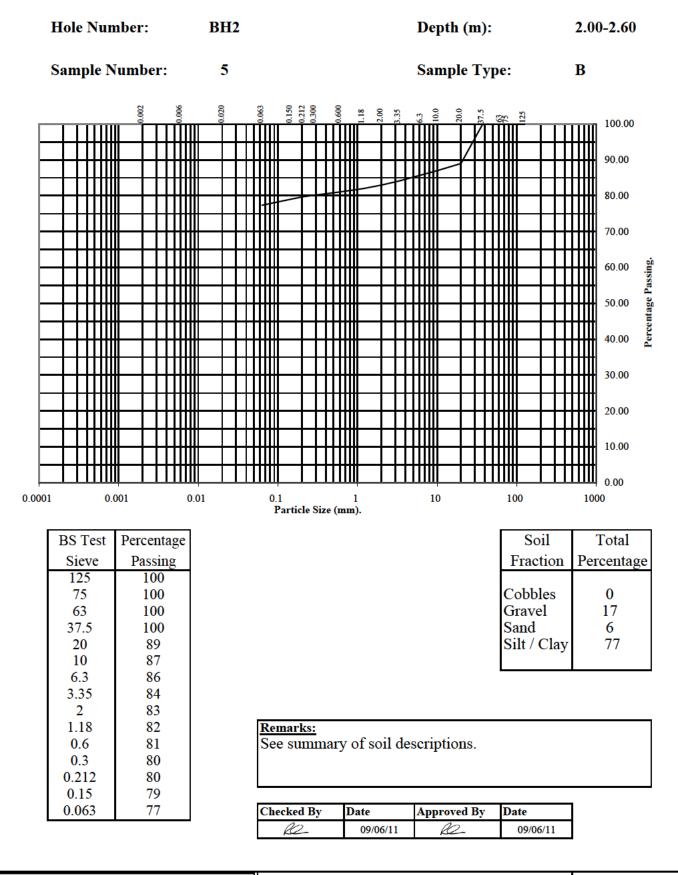
without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 9 : 1990



Diamete	er (mm):	102	Height (mm):	210	Test:	1001	nm Multis	stage				
	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks		
Specimen	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample tak	Sample taken from top of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of stra	Rate of strain = $1.9 \%/\text{min}$			
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm t	hickness	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Membrane	Membrane Correction applied (kPa)			
А	13	2.06	1.82	40	267	133	9.5	Brittle	0.35	0.35	0.34		
				80	331	165	13.1		See summa	ary of soil	description	ıs.	
				160	372	186	17.9		Checked	Date	Approved	Date	
									R	09/06/11	R	09/06/11	
Profes	PSL Professional Soils Laboratory				NORTH BIERLEY WWTW.						act No: 1/1223		

PSLR030 Issue 1

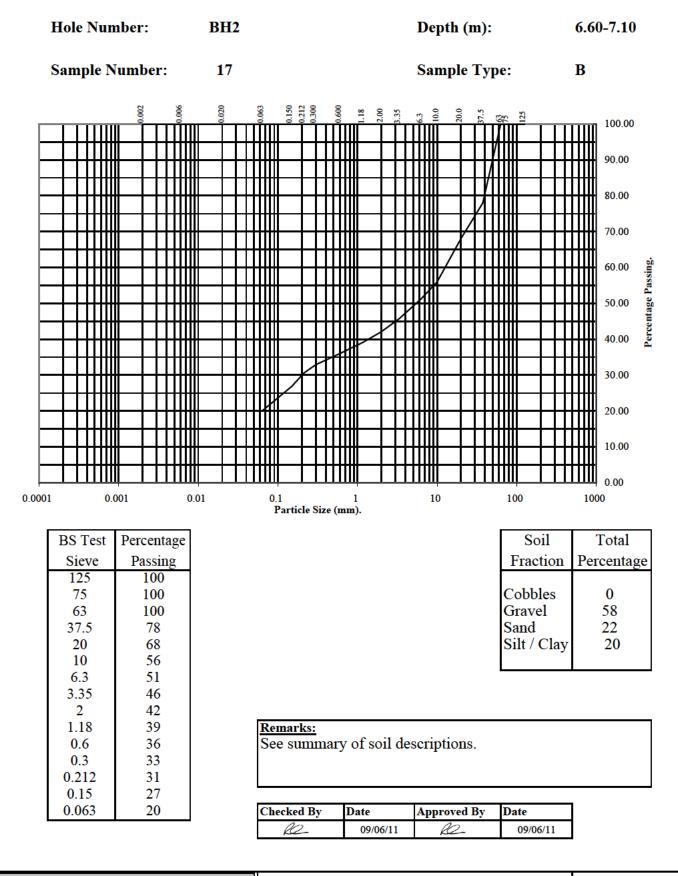
Professional Soils Laboratory


without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990

Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	m Single	Stage.	Undistur	bed		
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks		
	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample tak	Sample taken from top of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of stra				
	(kPa) (kPa)								Latex Mem	ıbrane use	ed 0.2 mm t	hickness,	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.35 kPa			kPa	
А	17	2.06	1.75	70	254	127	10.0	Brittle	Single stage due to early brittle failur			failure.	
									Checked	Date	Approved	Date	
									R	09/06/11	R	09/06/11	
Profes	P ssional S	SL ioils Labo	oratory	N	ORTH B	SIERLEY	YWWT	W.			act No: 1/1223		

BS1377 : Part 2 : 1990

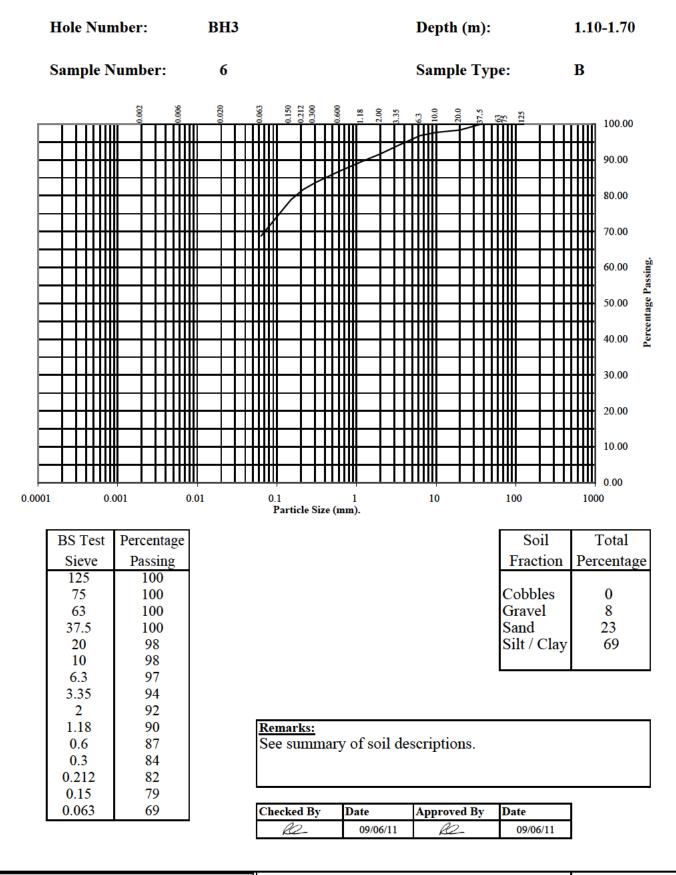
Wet Sieve, Clause 9.2



NORTH BIERLEY WWTW.

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



NORTH BIERLEY WWTW.

BS1377 : Part 2 : 1990

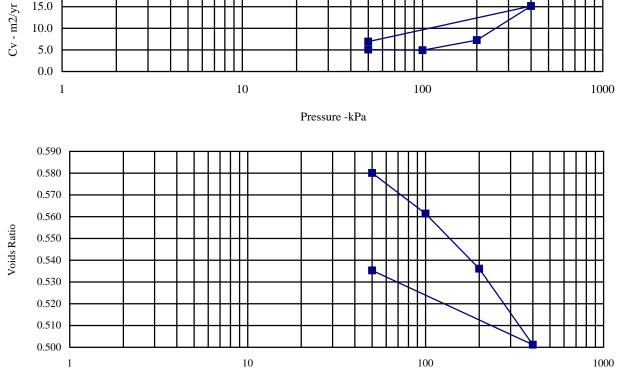
Wet Sieve, Clause 9.2

NORTH BIERLEY WWTW.

One Dimensional Consolidation Properties BS 1377: Part 5: 1990

Hole Number: BH3

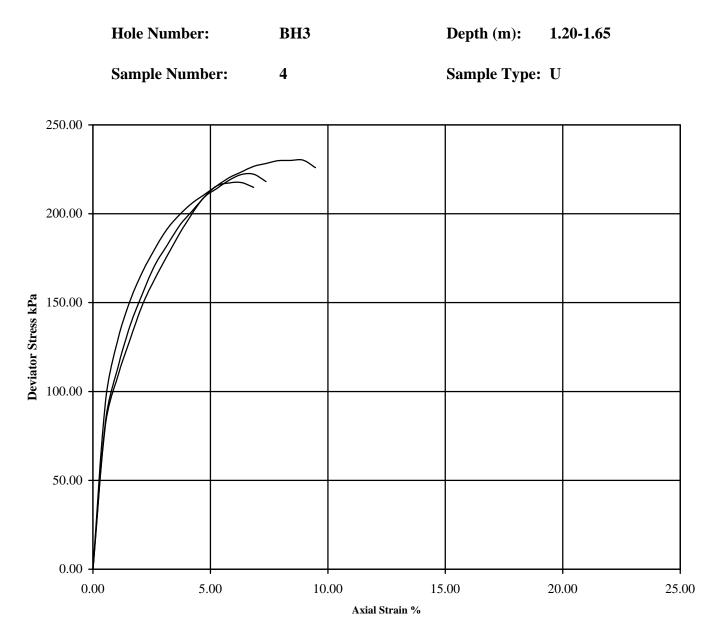
4


Sample Number:

Sample Type: U

1.20-1.65

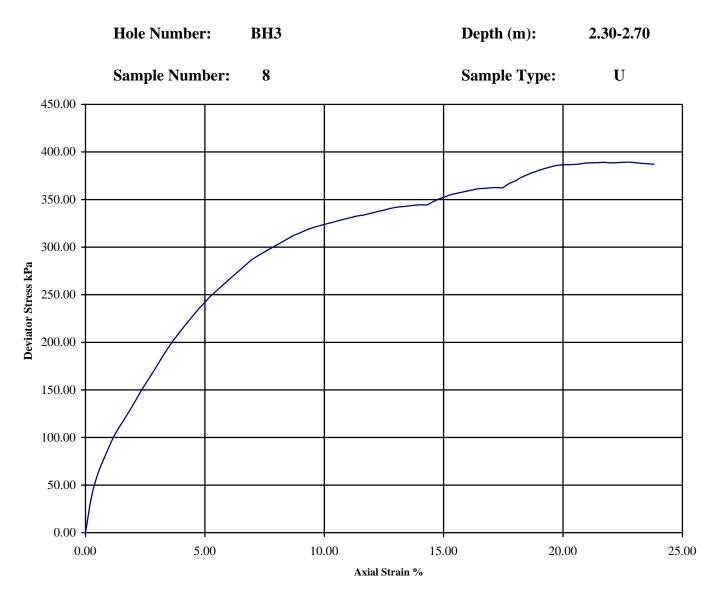
Depth (m):


Initial Conditions		Pres	sure Ra	nge	Mv	Cv	Specimen location	
Moisture Content (%):	24		kPa		m2/MN	m2/yr	within tube:	Тор
Bulk Density (Mg/m3):	2.05	0	-	50	0.259	5.057	Method used to	
Dry Density (Mg/m3):	1.66	50	-	100	0.236	4.932	determine CV:	t90
Voids Ratio:	0.6008	100	-	200	0.162	7.248	Nominal temperature	
Degree of saturation:	104.2	200	-	400	0.114	15.148	during test ' C:	20
Height (mm):	19.82	400	-	50	0.065	6.916	Remarks:	
Diameter (mm)	75.12						See summary of soils descri	ption.
Particle Density (Mg/m3):	2.65							
Assumed								
20.0 5 15.0								П

Pressure - kPa

		Date	Approved by	Date
	RC	11/03/11	R	11/03/11
PSL NORTH	I BIERLEY WWT	Contract No.		
Professional Soils Laboratory			PSL11/2 Page	1223 of

without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990


Diamete	er (mm):	38	Height	(mm):	76	Test:	Set of Thre	ee, 38 mm	Samples
	Moisture	Bulk	Dry	Cell	Deviator	Cohesion	Failure	Mode	Remarks
Specimen	Content	Density	Density	Pressure	Stress		Strain	of	Insufficient to carry out U100 triaxial
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	(kPa)	(kPa)	(%)	Failure	
1	22.4	2.05	1.68	20	218	109	6.3	Brittle	
2	22.7	2.11	1.72	40	222	111	6.8	Brittle	
3	23.0	2.07	1.68	80	230	115	8.9	Brittle	

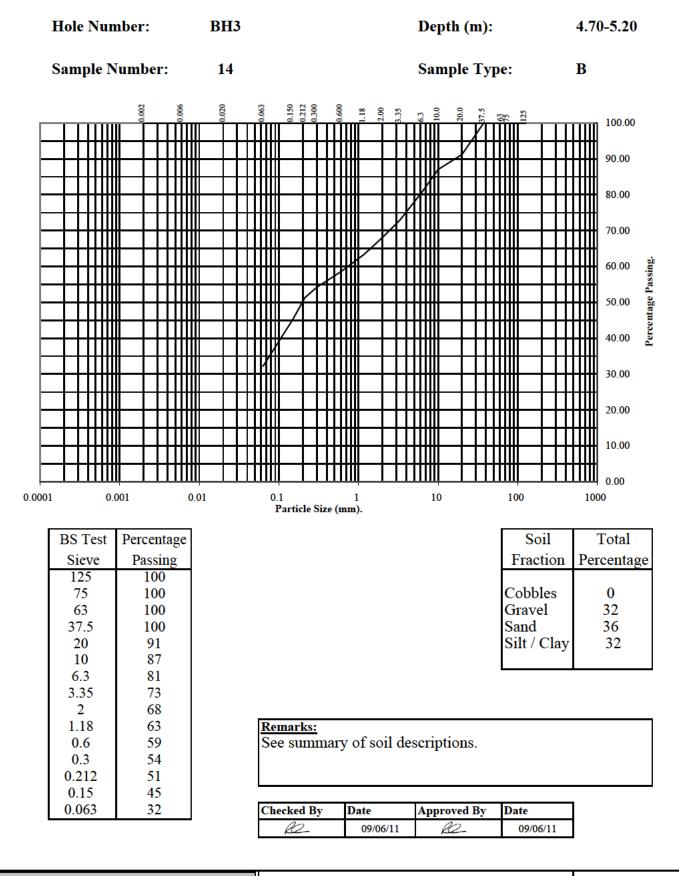
Checked and Approved By Date 09/0

PSL Professional Soils Laboratory

BORTH BIERLEY WWTW.

without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 9 : 1990

Diamete	er (mm):	102	Height (mm):	189	Test:	1001	nm Multis	stage			
	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Remarks		
Specimen	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample tal	Sample taken from top of tube		
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	Rate of strain = $2.1 $ %/min		
					(kPa)	(kPa)			Latex Mer	Latex Membrane used 0.2 mm thickne		
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Membrane Correction applied (kPa)			kPa)
А	14	2.23	1.95	25	345	172	14.0	Brittle	0.35	0.34	0.33	
				50	363	181	17.2		See summ	ary of soil	description	ıs.
				100	389	195	22.8		Checked	Date	Approved	Date
									09/06/11 R 09/06/			
	PSL				орти в	TEDI EV	V WWT	XX 7		Contra	act No:	

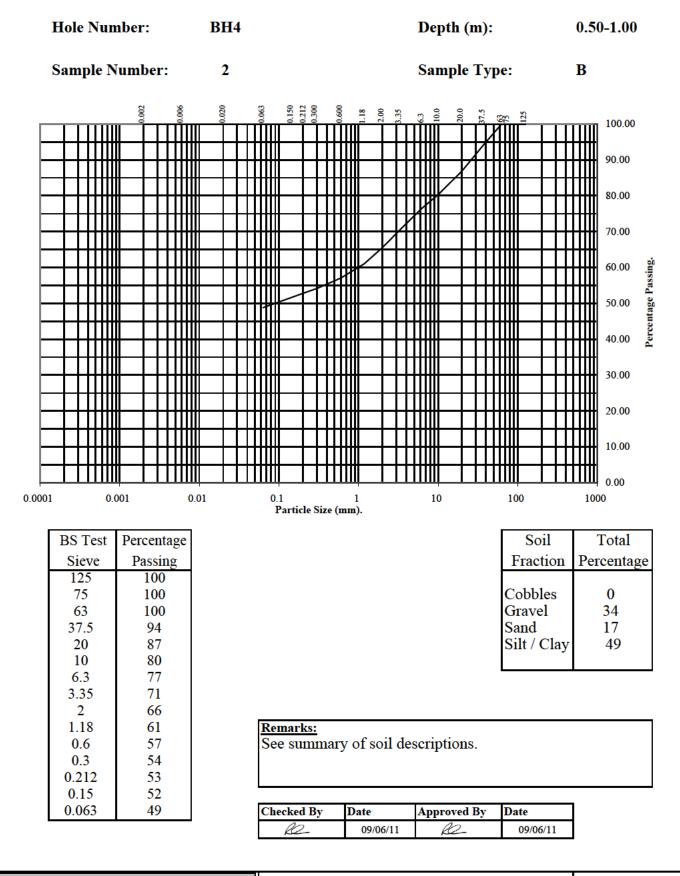

Professional Soils Laboratory

NORTH BIERLEY WWTW.

PSL11/1223

BS1377 : Part 2 : 1990

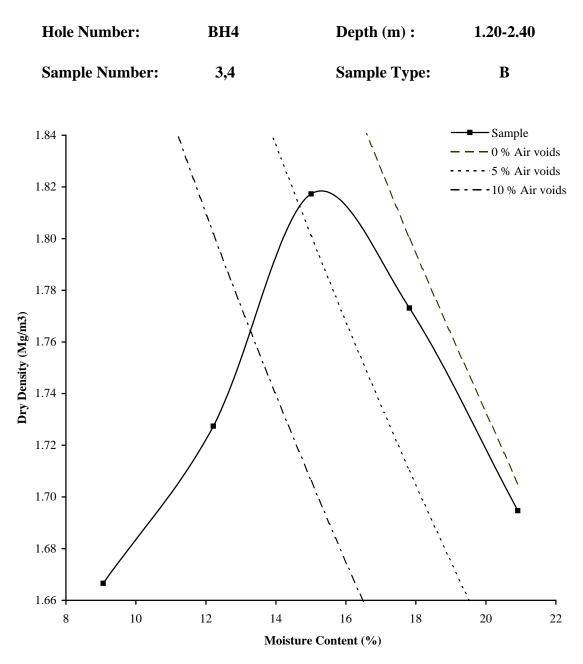
Wet Sieve, Clause 9.2



NORTH BIERLEY WWTW.

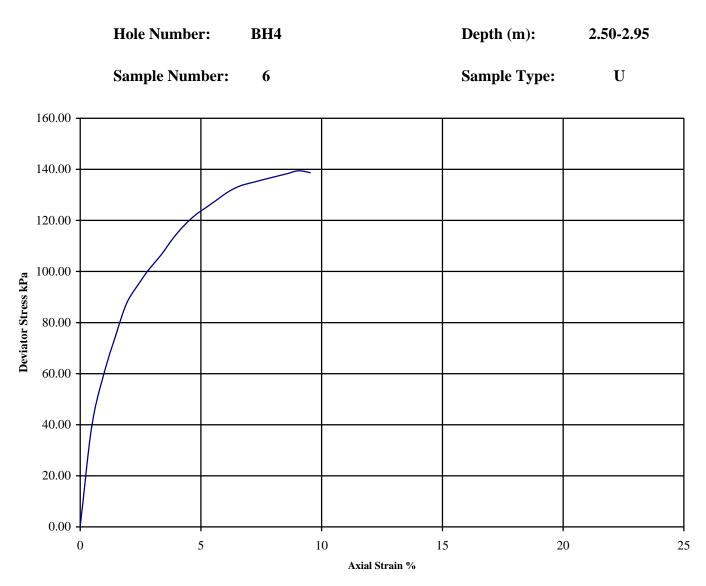
BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



NORTH BIERLEY WWTW.

Dry Density/Moisture Content Relationship Test


BS 1377 : Part 4 : 1990

Initial Moisture Content:	18 Method of Compaction 2.5kg / Separate Sample					
Particle Density (Mg/m3):	2.65	Assumed	Material Retained on 37.5 mm Test Sieve (%):			
Maximum Dry Density (Mg/m3):	1.82	Material Retained on 20.0 mm Test Sieve (%): 5			
Optimum Moisture Content (%)	:	15				
Remarks See	Summary of Soil	Descriptions.				

		Checked By	Date	Approved By	Date
		R	09/06/11	R	09/06/11
PSL Professional Soils Laboratory	NORTH BIERLEY	WWTW.		Contra PSL11	

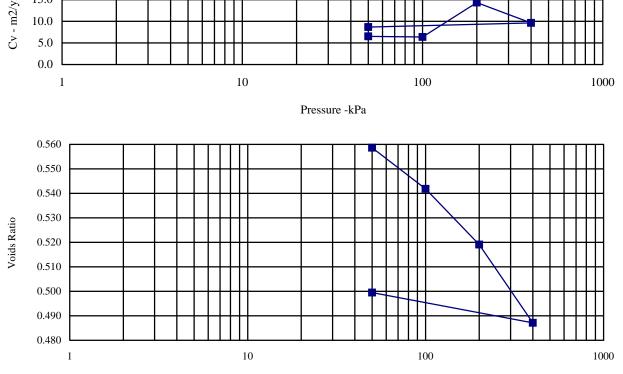
without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990

Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	m Single	Stage. Undistu	rbed			
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Remarks				
	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample taken from	ample taken from top of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain $= 1.9$	Rate of strain = 1.9 %/min			
					(kPa)	(kPa)			Latex Membrane us	ed 0.2 mm t	hickness,		
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied	Correction applied 0.36 kPa			
А	20	2.09	1.74	25	139	70	9.0	Brittle	Single stage due to e	Single stage due to early brittle failure.			
									Checked Date	Approved	Date		
									<i>Re</i> 09/06/11	R	09/06/11		
Profes	PSL Professional Soils Laboratory				ORTH B	BIERLEY	Y WWT	W.		act No: 1/1223			

One Dimensional Consolidation Properties BS 1377: Part 5: 1990

Hole Number: BH4

9

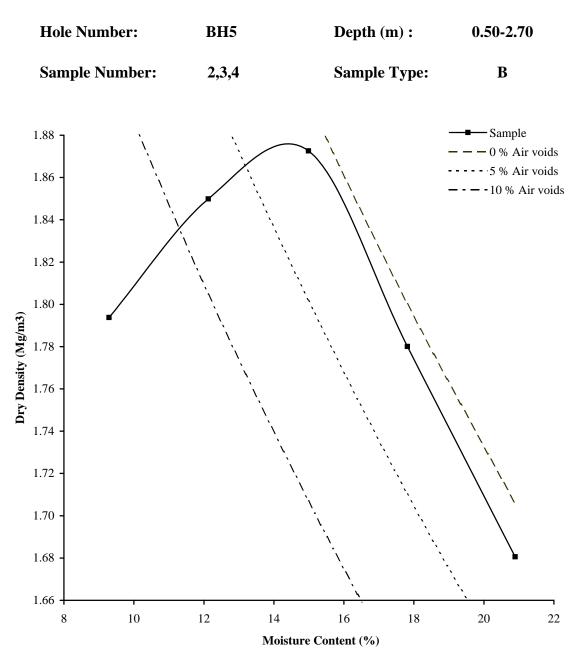

Sample Number:

Sample Type: U

4.50-4.95

Depth (m):

Initial Conditions		Pres	sure Ra	nge	Mv	Cv	Specimen location	
Moisture Content (%):	21		kPa		m2/MN	m2/yr	within tube:	Тор
Bulk Density (Mg/m3):	2.04	0	-	50	0.235	6.514	Method used to	
Dry Density (Mg/m3):	1.68	50	-	100	0.215	6.368	determine CV:	t90
Voids Ratio:	0.5771	100	-	200	0.147	14.339	Nominal temperature	
Degree of saturation:	97.9	200	-	400	0.105	9.612	during test ' C:	20
Height (mm):	19.84	400	-	50	0.024	8.668	Remarks:	
Diameter (mm)	75.18						See summary of soils descri	ption.
Particle Density (Mg/m3):	2.65							
Assumed								
20.0								Π
15.0								Ħ

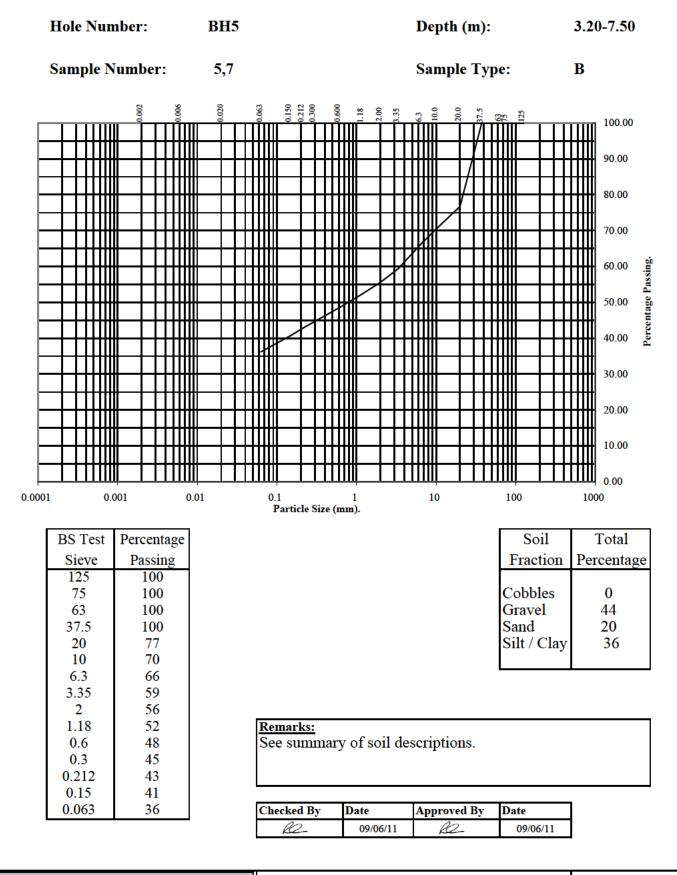


Pressure - kPa

		Checked by	Date	Approved by	Date
		R	11/03/11	R	11/03/11
PSL	NODTH DIEDI		17	Contract	t No.
Professional Soils Laboratory	NORTH BIERI		V.	PSL11/1	223
				Page	of

Dry Density/Moisture Content Relationship Test

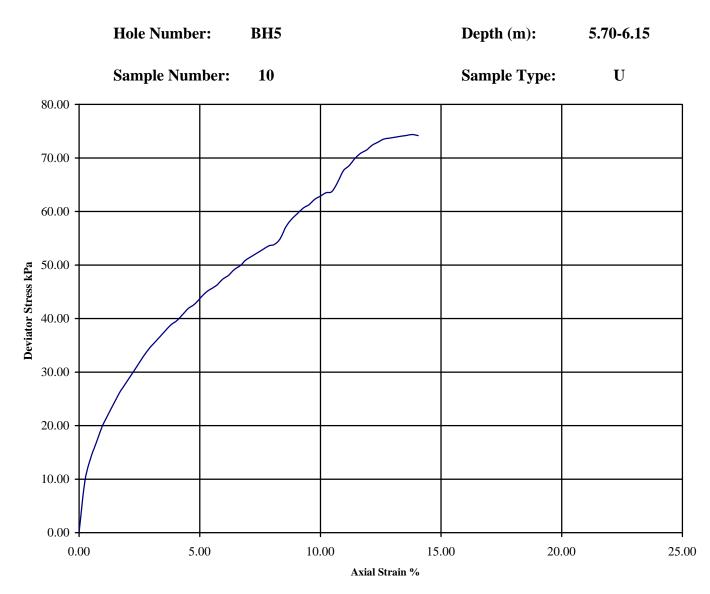
BS 1377 : Part 4 : 1990



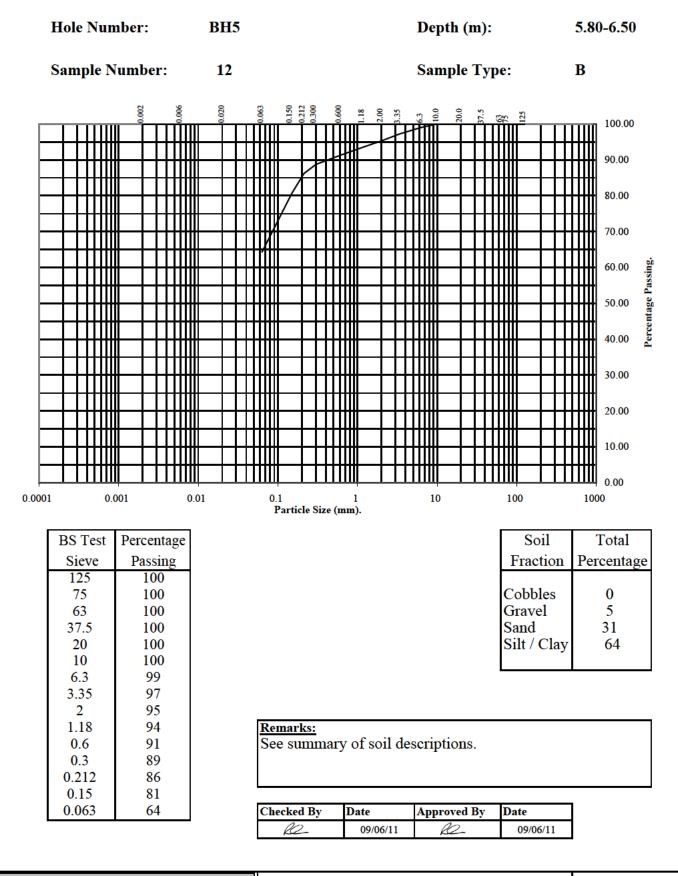
Initial Moisture Content:	15	15 Method of Compaction 2.5kg / Separate Sample		2.5kg / Separate Sample	
Particle Density (Mg/m3):	2.65	Assumed	Material F	12	
Maximum Dry Density (Mg/m3):	1.87	Material Retained on 20.0 mm Test Sieve (%):		
Optimum Moisture Content (%):		14			
Remarks See	Summary of Soil	Descriptions.			

		Checked By	Date	Approved By	Date
		Re	09/06/11	R	09/06/11
PSL Professional Soils Laboratory	NORTH BIERLEY	WWTW.		Contra PSL11	

BS1377 : Part 2 : 1990

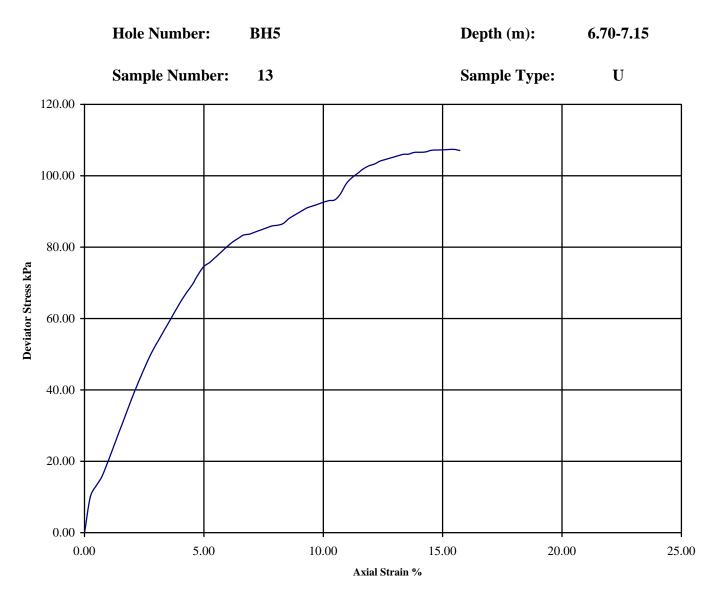

Wet Sieve, Clause 9.2

NORTH BIERLEY WWTW.


without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 9 : 1990

Diamete	er (mm):	102	Height ((mm):	210	Test:	100	mm Multis	tage				
	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks		
Specimen	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample tak	ample taken from top of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of stra	Rate of strain = 1.9% /min			
					(kPa)	(kPa)			Latex Men	Latex Membrane used 0.2 mm thickr			
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Membrane Correction applied (kPa)			kPa)	
А	31	1.97	1.50	50	54	27	8.1	Compound	0.36 0.35 0.35				
				100	64	32	10.5		See summa	ary of soil	description	IS.	
				200	74	37	13.8		Checked	Date	Approved	Date	
									R	09/06/11	R	09/06/11	
Profes	PSL Professional Soils Laboratory			NORTH BIERLEY WWTW.						Contract No: PSL11/1223			

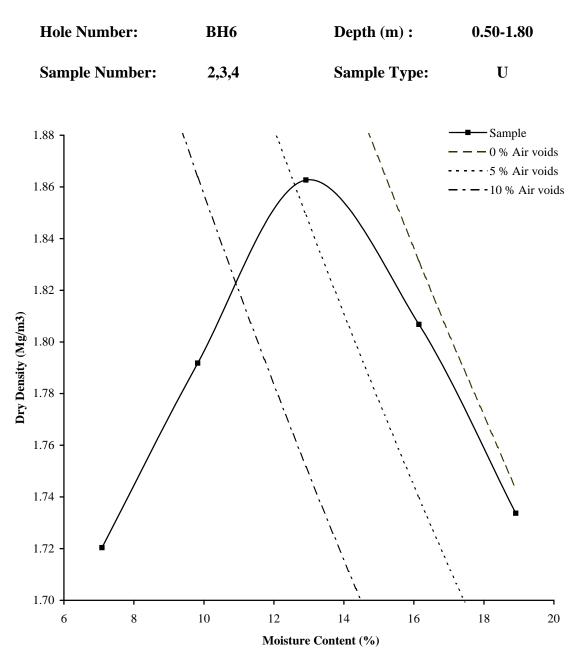
BS1377 : Part 2 : 1990


Wet Sieve, Clause 9.2

NORTH BIERLEY WWTW.

without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 9 : 1990

	psl									Contract No:		
			-					R	09/06/11	R	09/06/11	
				200	107	54	15.5		Checked	Date	Approved	Date
				100	93	47	10.5		See summa	ary of soil	description	s.
А	22	2.08	1.70	50	86	43	8.1	Plastic	0.36	0.35	0.34	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Membrane Correction applied (kPa)			kPa)
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thickness			hickness
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 1.9% /min			
Specimen	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample taken from top of tube			
	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Remarks		
Diamete	er (mm):	102	Height (mm):	210	Test:	1001	nm Multis	stage			

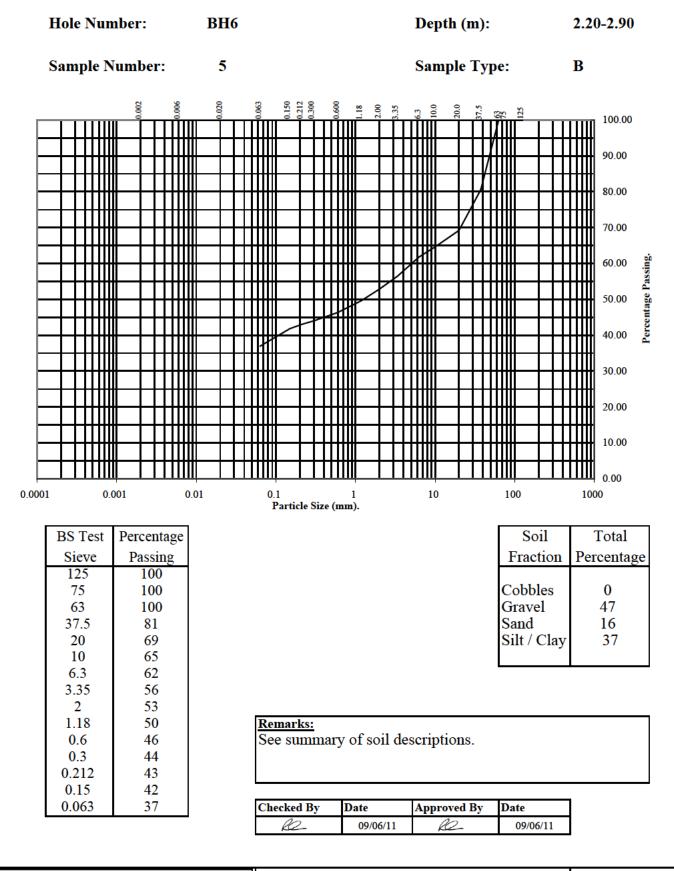

Professional Soils Laboratory

NORTH BIERLEY WWTW.

PSL11/1223

Dry Density/Moisture Content Relationship Test

BS 1377 : Part 4 : 1990

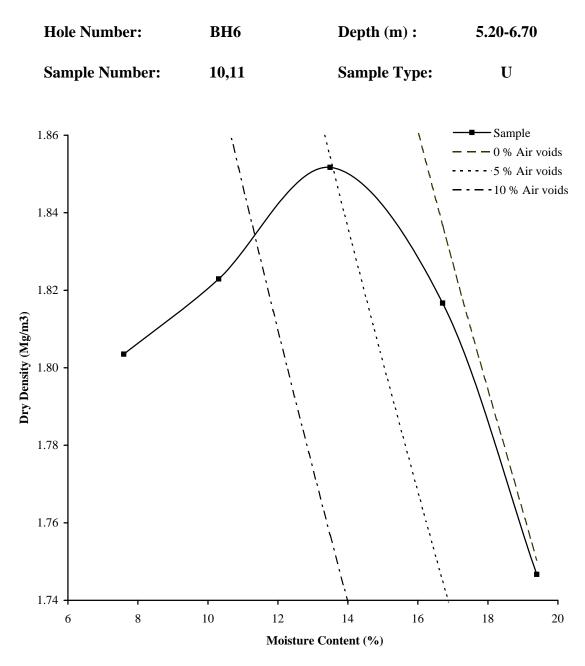


Initial Moisture Content:	13	Method of Con	npaction	2.5kg / Separate Sample	
Particle Density (Mg/m3):	2.60	Assumed	Material F	4	
Maximum Dry Density (Mg/m3)	1.86	Material Retained on 20.0 mm Test Sieve (%):			
Optimum Moisture Content (%)	Optimum Moisture Content (%):				
Remarks See S	Summary of Soil	Descriptions.			

		Checked By	Date	Approved By	Date
		R	09/06/11	R	09/06/11
PSL Professional Soils Laboratory	NORTH BIERLEY	WWTW.		Contra PSL11	

BS1377 : Part 2 : 1990

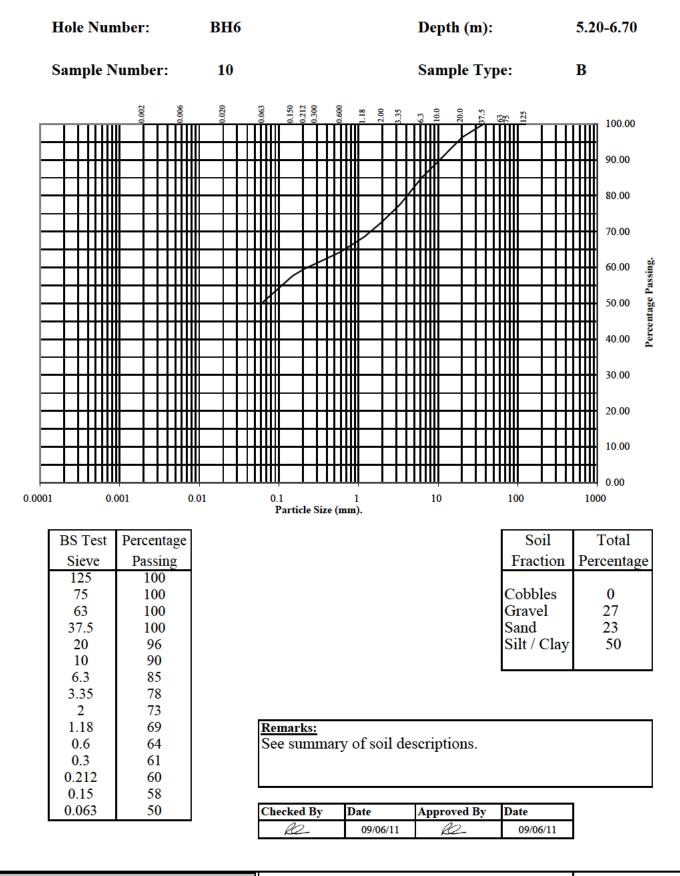
Wet Sieve, Clause 9.2



NORTH BIERLEY WWTW.

Dry Density/Moisture Content Relationship Test

BS 1377 : Part 4 : 1990

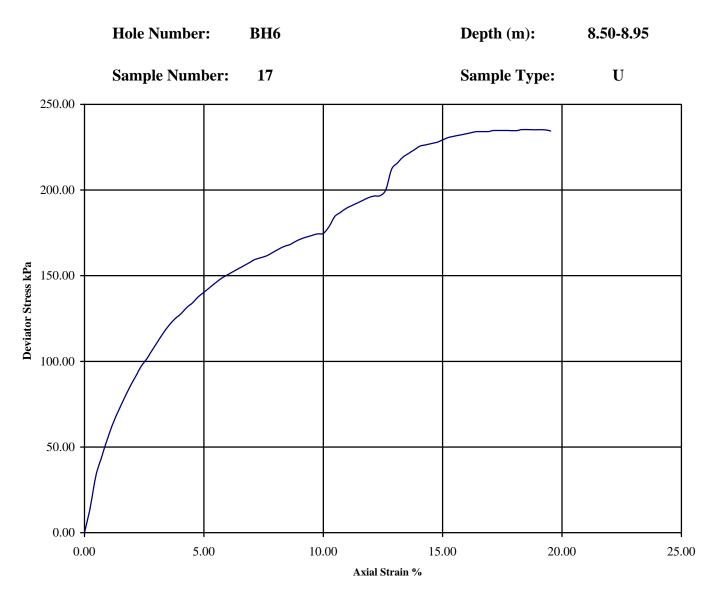


Initial Moisture Content:	17	Method of Con	npaction	2.5kg / Separate Sample	
Particle Density (Mg/m3):	2.65	Assumed	Material I	18	
Maximum Dry Density (Mg/m3	1.85	Material Retained on 20.0 mm Test Sieve (%):			
Optimum Moisture Content (%)	Optimum Moisture Content (%):				
Remarks See	Summary of Soil	Descriptions.			

		Checked By	Date	Approved By	Date
		Re	09/06/11	R	09/06/11
PSL Professional Soils Laboratory	NORTH BIERLEY	WWTW.		Contra PSL11	

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2


NORTH BIERLEY WWTW.

without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990

Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	m Single	Stage.	Undistur	bed		
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Remarks			
	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample tak	Sample taken from top of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	Rate of strain = 1.9% /min			
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm tl	hickness,	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.35	kPa	
А	16	2.10	1.82	75	113	57	10.0	Brittle	Single stage due to early brittle failure.				
										-			
									Checked	Date	Approved	Date	
									R	09/06/11	R	09/06/11	
PSL Professional Soils Laboratory				N	ORTH B	BIERLEY	YWWT	W.			act No: 1/1223		

without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 9 : 1990

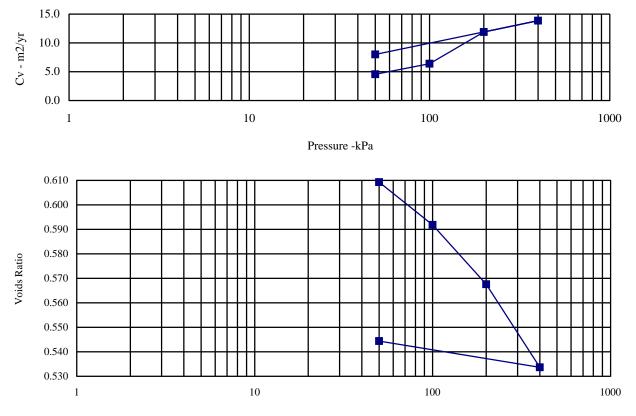
Diamete	er (mm):	102	Height (mm):	210	Test:	1001	nm Multis	stage				
	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode	Remarks				
Specimen	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample taken from top of tube				
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of strain = 1.9 %/min				
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thickness			hickness	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Membrane Correction applied (kPa)			kPa)	
А	22	2.02	1.66	80	175	87	10.0	Plastic	0.35	0.35	0.34		
				160	197	98	12.4		See summ	ary of soil	description	s.	
				320	235	118	18.3		Checked	Date	Approved	Date	
									RC 09/06/11 RC 09/06/1				
	psl				ORTH R	RIFRLEY	V WWT	W		Contra	act No:		

Professional Soils Laboratory

One Dimensional Consolidation Properties BS 1377: Part 5: 1990

Hole Number: BH7

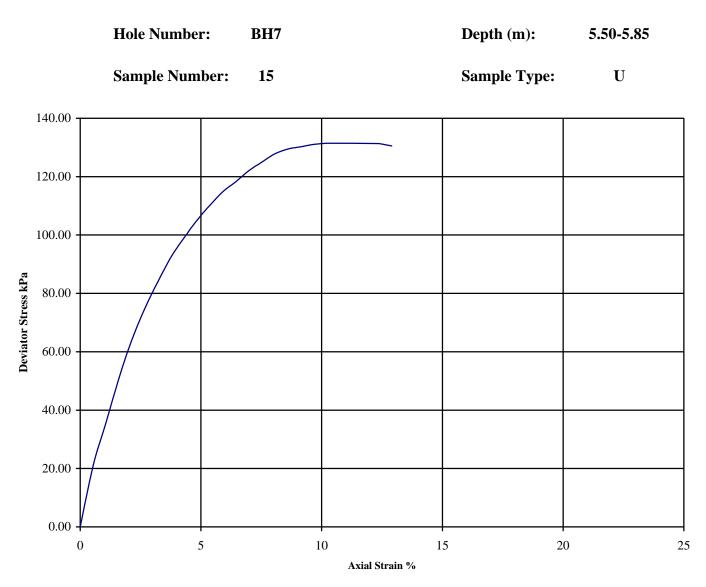
3


Sample Number:

Sample Type: U

1.20-1.65

Depth (m):

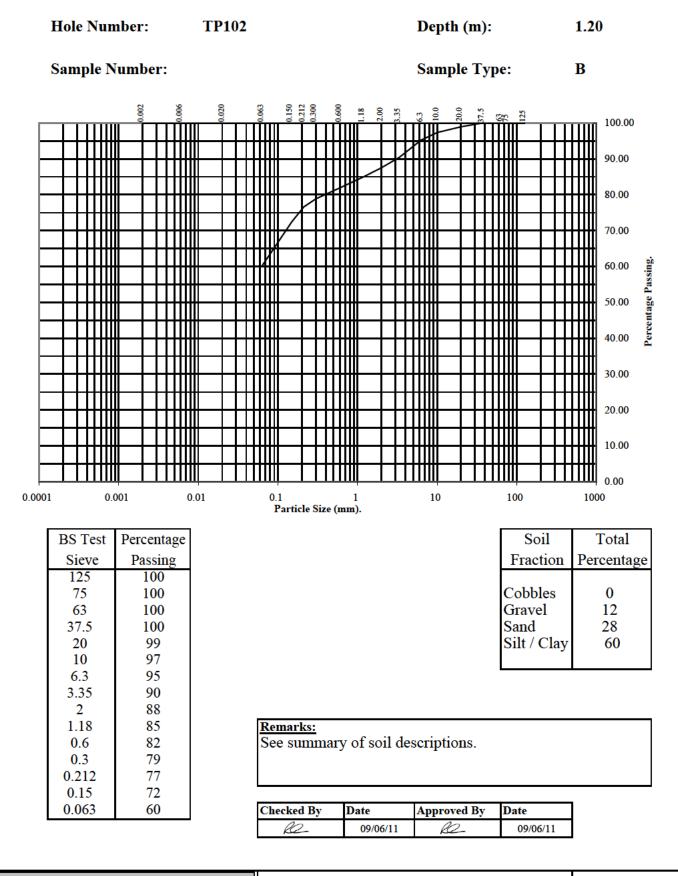

Initial Conditions Pressure Range Mv $\mathbf{C}\mathbf{v}$ Specimen location Moisture Content (%): m2/MN m2/yr within tube: 22 kPa Top Bulk Density (Mg/m3): 1.98 0 0.261 4.547 Method used to 50 -50 100 t90 Dry Density (Mg/m3): 1.63 0.217 determine CV: 6.387 _ Voids Ratio: 0.6306 100 200 0.152 11.887 Nominal temperature -90.9 Degree of saturation: 200 400 0.108 13.848 during test 'C: 20 _ Remarks: 19.9 400 0.020 7.990 Height (mm): 50 _ Diameter (mm) 75.19 See summary of soils description. Particle Density (Mg/m3): 2.65 Assumed

Pressure - kPa

		Checked by	Date	Approved by	Date
		R	11/03/11	R	11/03/11
PSL	NORTH BIERI	V	Contract No.		
Professional Soils Laboratory			v.	PSL11 /1	1223
				Page	of

without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990

Diamete	eter (mm): 102.0 Height (mm): 1					Test:	100 m	m Single	Stage.	Undistur	bed		
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Remarks			
	Content	Density	Density	Pressure	Diviator	Strength	Strain	of	Sample tak	Sample taken from top of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	Rate of strain = $2.1 $ %/min			
					(kPa)	(kPa)			Latex Men	Latex Membrane used 0.2 mm thickness			
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.35	kPa	
А	19	2.04	1.71	50	131	66	10.2	Brittle	Single stage due to early brittle failure.				
									Checked	Date	Approved	Date	
									R	09/06/11	R	09/06/11	
PSL Professional Soils Laboratory				N	ORTH B	SIERLEY	YWWT	W.			act No: 1/1223		

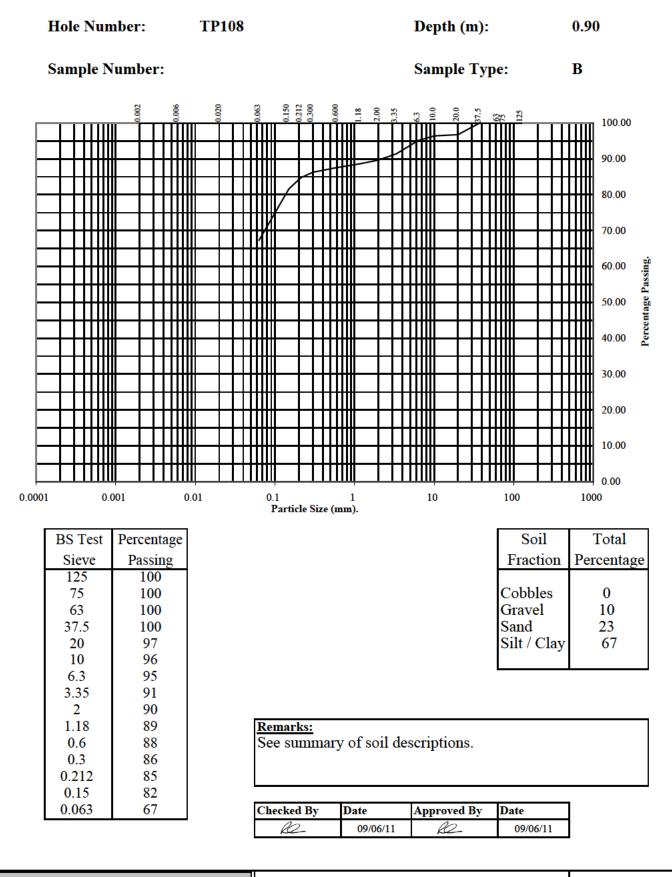

SUMMARY OF LABORATORY HAND VANE TESTS

Hole Number	Sample Number	Sample Type	Depth m	Moisture Content %	Shear Strength kPa	Description
BH4	12	U	6.50-6.95	23	84	Stiff dark brown gravelly sandy CLAY.
BH6	20	U	9.50-9.85	15	57	Firm brown very gravelly very sandy CLAY.
BH7	6	U	2.20-2.65	20		Brown mottled grey gravelly sandy CLAY.

	Compiled by	Date	Checked by	Date	Approved by	y	Date
est.	$\partial D $	09/06/11	RC	09/06/11	R	2	09/06/11
Professional Soils Laboratory		NODTU	BIERLEY WWTW.			Contract No:	PSL11/1223
		ΝΟΚΙΠ				Client Ref:	SH10534

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

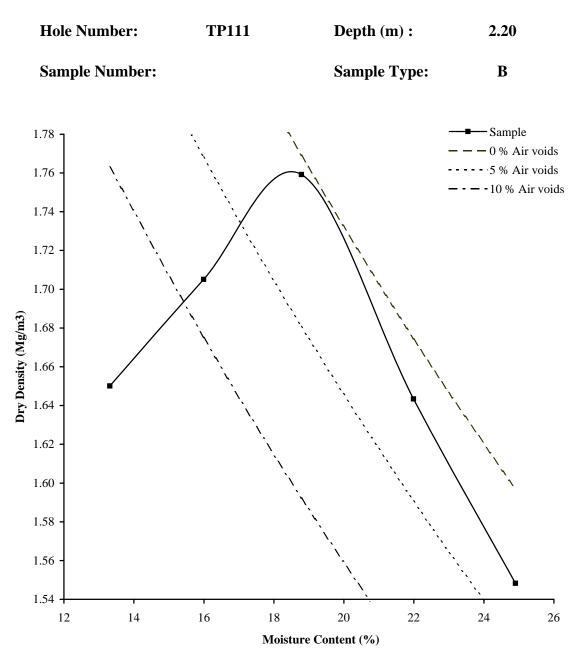


NORTH BIERLEY WWTW.

Particle Size Distribution Test

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

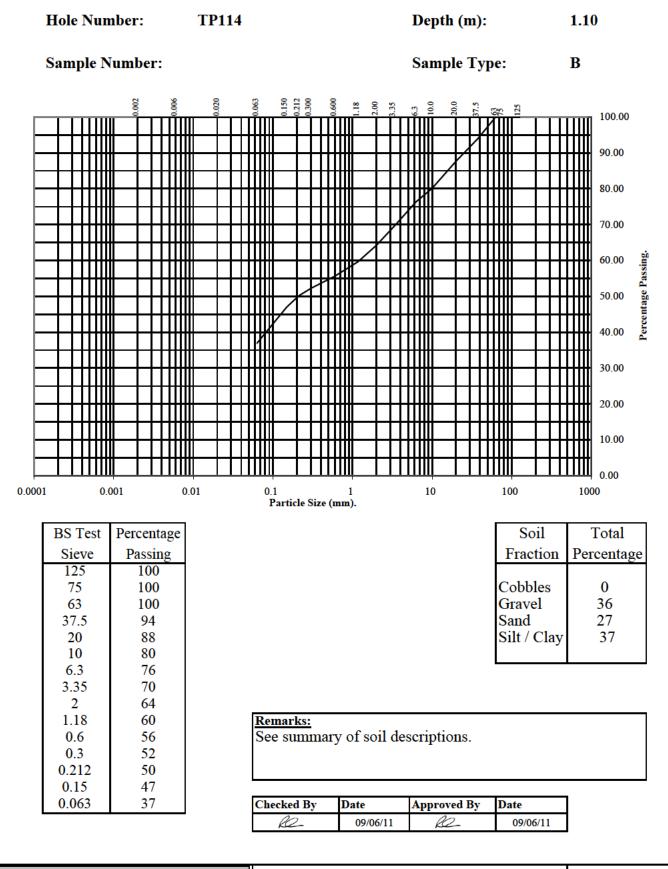


NORTH BIERLEY WWTW.

Contract No.: PSL11/1223

Dry Density/Moisture Content Relationship Test

BS 1377 : Part 4 : 1990

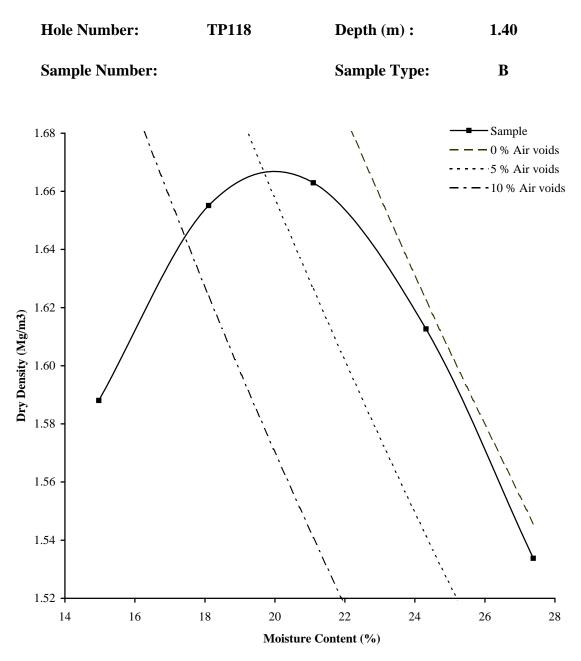

Initial Moisture Content:	19	Method of Con	apaction 2.5kg / Separate Sample		
Particle Density (Mg/m3):	2.65	Assumed	Material Retained on 37.5 mm Test Sieve (%):		
Maximum Dry Density (Mg/m3):		1.76	Material Retained on 20.0 mm Test Sieve (%):		
Optimum Moisture Content (%):		19			
Remarks See Summary of Soil Descrip		Descriptions.			

		Checked By	Date	Approved By	Date
		R	09/06/11	R	09/06/11
PSL Professional Soils Laboratory	NORTH BIERLEY	WWTW.		Contra PSL11	

Particle Size Distribution Test

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



NORTH BIERLEY WWTW.

Contract No.: PSL11/1223

Dry Density/Moisture Content Relationship Test

BS 1377 : Part 4 : 1990

Initial Moisture Content:	21	Method of Con	paction 2.5kg / Separate Sample		
Particle Density (Mg/m3):	2.68	Assumed	Material Retained on 37.5 mm Test Sieve (%):		
Maximum Dry Density (Mg/m3):		1.66	Material F	2	
Optimum Moisture Content (%):		20			
Remarks See Summary of Soil Descript		Descriptions.			

		Checked By	Date	Approved By	Date
		R	09/06/11	R	09/06/11
PSL Professional Soils Laboratory	NORTH BIERLEY	WWTW.		Contra PSL11	

APPENDIX IX

Soakaway Results

SOAKAWAY RESULTS

Job Number: SH10534

Job Name: North Bierley WWTW

Assessor: M Kelly

Date: 23rd May 2011

TP101		
Time elapsed (mins)	Depth (m)	Reduction (m)
1	2.45	0.00
2	2.5	0.05
3	2.6	0.15
4	2.69	0.24
5	2.77	0.32
6	2.84	0.39
7	2.9	0.45
8	2.95	0.50

TP103		
Time elapsed (mins)	Depth (m)	Reduction (m)
1	2.45	0.00
2	2.52	0.07
3	2.59	0.14
4	2.65	0.20
5	2.71	0.26
6	2.77	0.32
7	2.82	0.37
8	2.87	0.42
9	2.92	0.47
10	2.95	0.50

TP105		
Time elapsed (mins)	Depth (m)	Reduction (m)
1	1.55	0.00
5	1.55	0.00
10	1.55	0.00
30	1.55	0.00
60	1.55	0.00
90	1.55	0.00
120	1.55	0.00
150	1.55	0.00
180	1.55	0.00
210	1.55	0.00
240	1.55	0.00
270	1.55	0.00

TP108		
Time elapsed (mins)	Depth (m)	Reduction (m)
1	1.05	0.00
5	1.05	0.00
10	1.05	0.00
30	1.05	0.00
60	1.05	0.00
90	1.05	0.00
120	1.05	0.00
150	1.05	0.00
180	1.05	0.00
210	1.05	0.00
240	1.05	0.00
270	1.05	0.00

TP113		
Time elapsed (mins)	Depth (m)	Reduction (m)
1	0.65	0.00
5	0.65	0.00
10	0.65	0.00
30	0.65	0.00
60	0.65	0.00
90	0.65	0.00
120	0.65	0.00
150	0.65	0.00
180	0.65	0.00
210	0.65	0.00
240	0.65	0.00
270	0.65	0.00

	Length	Width	Depth	Vp75-25	ap50	tp75-25	Soil Infiltration Rate (m/s)
TP101	1.6	0.45	3.2	0.36	2.77	8	2.708E-04
TP103	1.75	0.45	3.2	0.39	2.99	10	2.197E-04
TP105	1.3	0.45	2.3	0.29	2.34	n/a	FAILED
TP108	1.6	0.45	1.8	0.36	2.77	n/a	FAILED
TP113	1.1	0.45	1.4	0.25	2.05	n/a	FAILED

APPENDIX X

Gas Monitoring Results

Client Name: KeyLand Developments

Date of Sampling: 19/05/2011

Site Name: North Bierley

Job Number: SH10534

Borehole Ref.	CH₄	CO₂	0 ₂	Flow Rate	Sample Type	Barometric Pressure	Relative Pressure	Depth to Water
Kei.	% by Volume	% by Volume	% by Volume	l/hr		(mb)	(mb)	(m bgl)
WS110	0.0	0.3	8.1	-0.1	Acc.	1005	-0.17	3.01
WS102	0.0	0.6	18.0	+0.1	Acc.	1005	-0.32	4.58
WS107	0.0	0.3	18.2	-0.2	Acc.	1005	-0.28	Dry
BH01	0.0	0.0	18.7	0.0	Acc.	1005	-0.16	Dry
WS104	0.0	0.0	18.5	+0.4	Acc.	1005	-0.26	Dry
WS105	0.0	1.3	14.6	+0.1	Acc.	1005	-0.29	2.17
					Acc.			
					Acc.			
					Acc.			
					Acc.			
					Acc.			

Atmospheric Pressure: As indicated

Instrument Used: Infrared GA 2000

Pressure Trend: Steady

Sample Type: As indicated

Operator: J Lymer

Weather: Dry, overcast, warm

Notes:	

Client Name: KeyLand Developments

Date of Sampling: 01/06/2011

Site Name: North Bierley

Job Number: SH10534

Borehole Ref.	CH₄ % by Volume	CO₂ % by Volume	O₂ % by Volume	Flow Rate I/hr	Sample Type	Barometric Pressure (mb)	Relative Pressure (mb)	Depth to Water (m bgl)
BH1	0.0	0.0	18.5	-0.7	Acc.	1014	-0.01	DRY
BH5	0.0	0.2	18.5	-0.3	Acc.	1014	-0.04	8.42
BH6	0.0	0.3	18.6	0.0	Acc.	1014	-0.29	9.56
BH7	0.0	0.0	19.3	-0.2	Acc.	1013	-0.05	DRY
WS102	0.0	0.1	18.4	0.1	Acc.	1014	-0.07	4.90
WS104	0.0	2.0	16.5	-0.4	Acc.	1014	-0.01	DRY
WS105	0.0	0.0	19.2	-0.5	Acc.	1014	-0.01	2.24
WS107	0.0	0.0	18.6	-0.5	Acc.	1014	-0.07	DRY
WS110	0.0	0.0	18.5	-0.1	Acc.	1015	-0.13	4.5

Atmospheric Pressure: As indicated

Pressure Trend: Fluctuating

Weather: Warm and sunny

Instrument Used: Infrared GA 2000

Sample Type: As indicated

Operator: J A Shaw

Client Name: KeyLand Developments

Date of Sampling: 22/07/2011

Site Name: North Bierley

Job Number: SH10534

Borehole Ref.	CH₄ % by Volume	CO₂ % by Volume	O₂ % by Volume	Flow Rate I/hr	Sample Type	Barometric Pressure (mb)	Relative Pressure (mb)	Depth to Water (m bgl)
BH1	0.0	0.3	19.7	0.0	Acc.	1007	+0.01	DRY
BH5	0.0	1.1	17.4	0.0	Acc.	1007	+0.12	8.942
BH6	0.0	2.3	16.5	0.1	Acc.	1007	+0.16	9.600
BH7	0.0	1.4	17.1	0.0	Acc.	1007	+0.10	DRY
WS102	0.0	0.4	19.7	0.0	Acc.	1007	+0.04	4.800
WS104	0.0	3.7	15.5	0.1	Acc.	1008	+0.05	DRY
WS105	0.0	1.5	11.8	0.0	Acc.	1008	+0.06	2.095
WS107	0.0	0.9	19.3	0.1	Acc.	1007	+0.01	DRY
WS110	0.0	1.3	18.4	0.1	Acc.	1007	+0.02	3.21

Atmospheric Pressure: As indicated

Pressure Trend: Fluctuating

Weather: Cloudy and warm

Instrument Used: Infrared GA 2000

Sample Type: As indicated

Operator: M Kelly

Client Name: KeyLand Developments

Date of Sampling: 03/04/2012

Site Name: North Bierley

Job Number: SH10534

Borehole Ref.	CH₄	CO₂	O2	Flow Rate	Sample Type	Barometric Pressure	Relative Pressure	Depth to Water (Depth to Base)	
	% by Volume	% by Volume	% by Volume	l/hr		(mb)	(mb)	(m bgl)	
BH1	0.0	3.4	11.0	0.0	Acc.	989	+0.19	DRY (6.02)	
BH5	12.5	0.6	13.0	0.0	Acc.	990	-0.14	7.727 (9.99)	
BH6	0.0	3.4	13.5	0.1	Acc.	990	-0.07	9.070 (10.04)	
BH7	1.6	0.0	19.8	0.1	Acc.	987	-0.04	DRY (6.97)	
WS102	0.0	1.2	19.0	0.0	Acc.	989	-0.17	DRY (4.91)	
WS104	0.0	2.6	14.7	0.1	Acc.	990	-0.08	DRY (4.87)	
WS105	0.0	2.4	14.1	0.0	Acc.	991	-0.01	1.608 (3.92)	
WS107	0.0	1.6	17.7	0.0	Acc.	987	-0.06	DRY (4.90)	
WS110	UNABLE TO ACCESS								

Atmospheric Pressure: As indicated

Instrument Used: Infrared GA 2000

Pressure Trend: Fluctuating

Sample Type: As indicated

Operator: M Kelly

Weather: Cloudy and warm

Notes:	

Client Name: KeyLand Developments

Date of Sampling: 20/04/2012

Site Name: North Bierley

Job Number: SH10534

Borehole Ref.	CH₄ % by Volume	CO₂ % by Volume	O ₂ % by Volume	Flow Rate I/hr	Sample Type	Barometric Pressure (mb)	Relative Pressure (mb)	Depth to Water (m bgl)
BH1	0.0	3.1	11.9	0.2	Acc.	980	-0.03	DRY
BH5	34.6	1.2	4.3	0.2	Acc.	981	-0.05	7.49
BH6	0.0	1.0	19.8	0.1	Acc.	981	-0.05	8.50
BH7	0.0	0.2	20.3	0.3	Acc.	978	-0.07	5.13
WS102	0.0	0.2	19.8	0.0	Acc.	980	-0.03	2.04
WS104	0.0	0.2	8.1	-0.2	Acc.	981	-0.05	DRY
WS105	0.0	1.3	12.8	-0.2	Acc.	981	-0.05	DRY
WS107	0.0	0.8	15.6	0.3	Acc.	980	-0.03	3.50
WS110	UNABLE TO ACCESS							

Atmospheric Pressure: As indicated

Pressure Trend: Fluctuating

Weather: Windy, slight rain

Sample Type: As indicated

Instrument Used: Infrared GA 2000

Operator: J A Shaw

Client Name: KeyLand Developments

Date of Sampling: 17/05/2012

Site Name: North Bierley

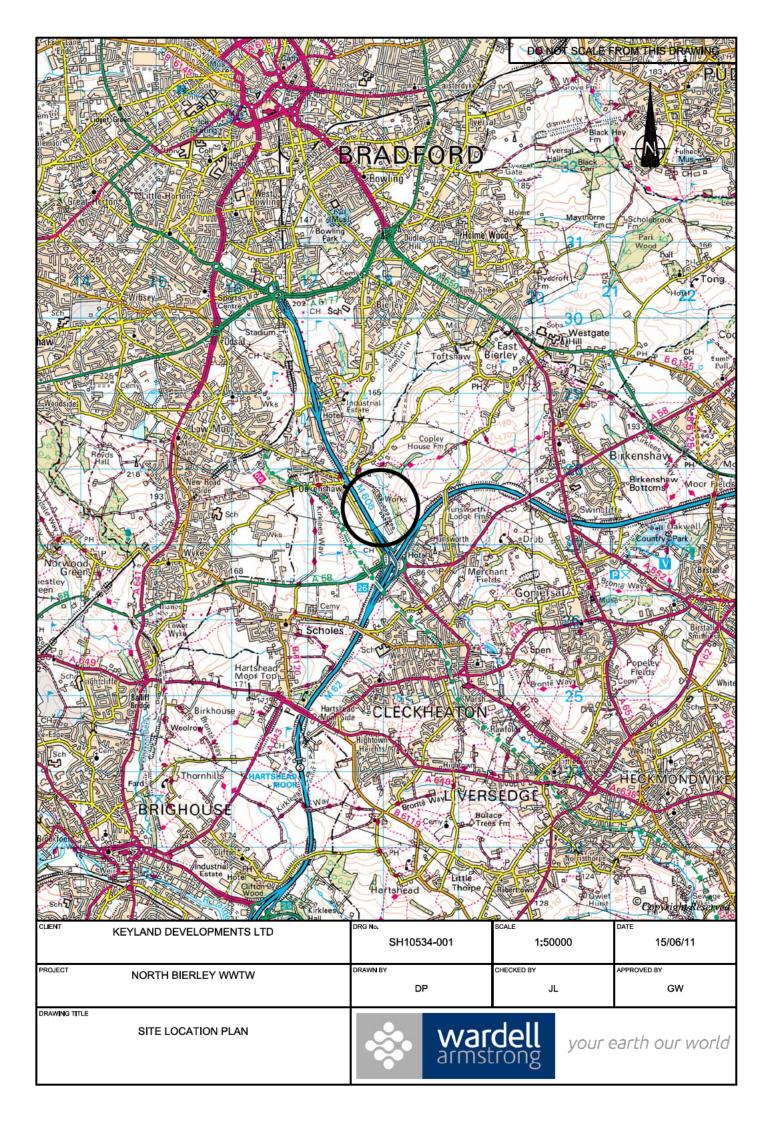
Job Number: SH10534

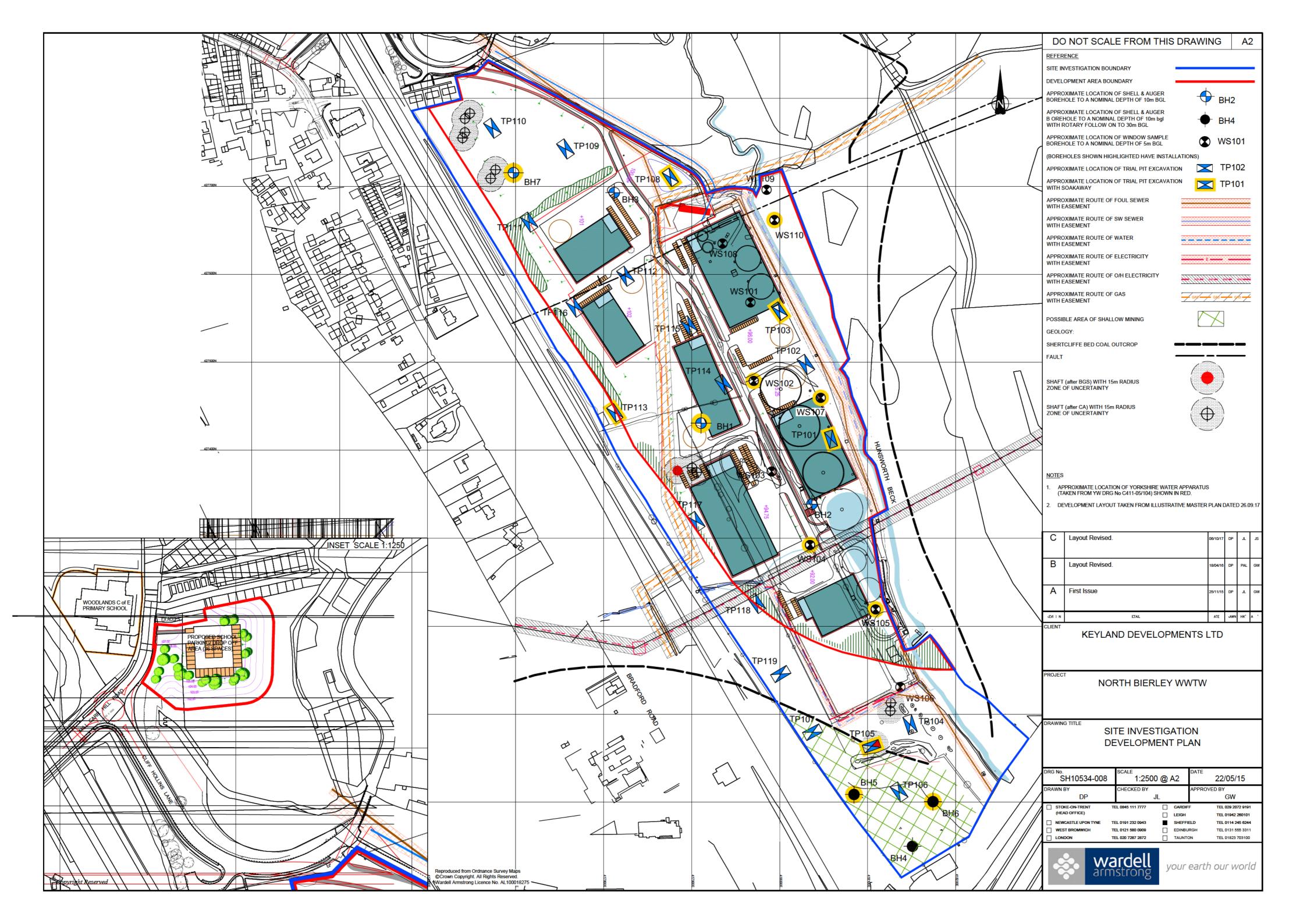
Borehole Ref.	CH₄	CO₂	O ₂	Flow Rate	Sample Type	Barometric Pressure	Relative Pressure	Depth to Water (Depth to Base)	
	% by Volume	% by Volume	% by Volume	l/hr		(mb)	(mb)	(m bgl)	
BH1	0.0	1.3	19.0	0.1	Acc.	1008	+1.08	DRY	
BH5	20.3	3.0	0.0	0.0	Acc.	1009	-0.27	7.406	
BH6	0.0.	3.3	13.7	0.0	Acc.	1009	-0.55	<mark>8.695</mark>	
BH7	0.0	0.7	19.1	0.1	Acc.	1006	-0.10	5.373	
WS102	0.0	1.4	18.5	0.1	Acc.	1008	-0.32	DRY	
WS104	0.0	2.7	14.5	0.1	Acc.	1008	-0.24	DRY	
WS105	0.0	2.2	14.7	0.0	Acc.	1009	-0.08	1.481	
WS107	0.0	2.0	17.0	0.1	Acc.	1009	-0.16	DRY	
WS110	UNABLE TO ACCESS								

Atmospheric Pressure: As indicated

Pressure Trend: Falling

Weather: Light rain, cool


Instrument Used: Infrared GA 2000


Sample Type: As indicated

Operator: M Kelly

DRAWINGS

